
lable at ScienceDirect

Forensic Science International: Digital Investigation 40 (2022) 301347
Contents lists avai
Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi
Forensic analysis of instant messengers: Decrypt Signal, Wickr, and
Threema

Jihun Son a, Yeong Woong Kim a, Dong Bin Oh b, Kyounggon Kim c, *

a International Cybercrime Research Center, Korean National Police University, 100-50 Hwangsan-gil, Shinchang-myeon, Asan-si, 31539, Chungcheongnam-
do, South Korea
b School of Cyber Security, Korea University, 13, Jongam-ro, Seongbuk-gu, 02841, Seoul, South Korea
c Center of Excellence in Cybercrime and Digital Forensics, Naif Arab University for Security Science, Khurais Rd, Ar Rimayah, Riyadh, 14812, Saudi Arabia
a r t i c l e i n f o

Article history:
Received 30 August 2021
Received in revised form
10 January 2022
Accepted 10 January 2022
Available online 31 January 2022

Keywords:
Instant Messenger
Signal
Wickr
Threema
Forensics
* Corresponding author.
E-mail address: kkim@nauss.edu.sa (K. Kim).

https://doi.org/10.1016/j.fsidi.2022.301347
2666-2817/© 2022 Elsevier Ltd. All rights reserved.
a b s t r a c t

As organized criminals use instant messengers, it becomes increasingly important to obtain digital ev-
idence from instant messengers. Recently, instant messengers apply end-to-end encryption, so all digital
evidence can only be obtained from your mobile device. However, some instant messengers encrypt and
store database and multimedia files, making forensic analysis of mobile devices difficult. In this paper, we
present a methodology for analyzing the decryption algorithm of the messenger, and apply this meth-
odology to Signal, Wickr, and Threema. We extracted data from both unrooted and rooted devices and
performed static and dynamic analysis. As a result, we succeeded in decrypting all the encrypted
database, multimedia, log, and preferences files of three messengers. We describe the decryption algo-
rithms and disclose all decryption scripts.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Starting with AOL Instant Messenger (AIM) in 1997, instant
messenger has become one of the most popular applications in the
world. WhatsApp, the most representative instant messenger, has
approximately 2 billion active users, while Facebook Messenger
andWeChat have 1.3 billion and 1.2 billion active users, respectively
(Statista, 2021). Organized criminals also use instant messengers,
mainly to exchange information about drugs, weapons, and child
pornography. The FBI operated fake encrypted messengers to trick
organized criminals, arresting more than 800 suspects and confis-
cating drugs and weapons (BBC, 2021). Therefore, from a digital
forensic point of view, messenger analysis is becoming increasingly
important.

Recently, instant messengers have introduced end-to-end
encryption technology to combat privacy breaches such as mass
surveillance activities by intelligence agencies (R€osler et al., 2018).
If end-to-end encryption is applied to the messenger, the conver-
sation history is not stored on the server, so it becomes important to
obtain evidence from the local device. However, some instant
messengers (e.g., Signal) apply encryption to databases and
multimedia files, making it impossible to decrypt without knowing
the decryption algorithm. Another security feature of these mes-
sengers, messenger lock feature, also makes it difficult to collect
evidence from devices. All these security features of instant
messenger stand as a barrier to forensic analysts.

In this paper, we analyzed the decryption algorithms of Signal,
Wickr and Threema messengers on Android devices. All of these
messengers support end-to-end encryption by default. They
encrypt both database and multimedia files. They also have the
messenger lock feature, which allows users to lock the messenger
with a password. Our goal is to decrypt all encrypted files of Signal,
Wickr, and Threema. If possible, we tried to decrypt without the
user’s password, even if the messenger lock feature was enabled.

The contributions of this paper are as follows.

� We presented a methodology for analyzing the decryption al-
gorithm of instant messenger. We extracted data from both
unrooted and rooted devices and performed static and dynamic
analysis on messenger applications.

� We decrypted all encrypted files of Signal, Wickr, and Threema.
Compared to previous studies, our study found a new

mailto:kkim@nauss.edu.sa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2022.301347&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2022.301347
https://doi.org/10.1016/j.fsidi.2022.301347

J. Son, Y.W. Kim, D.B. Oh et al. Forensic Science International: Digital Investigation 40 (2022) 301347
decryption algorithm, expanded the range of decryptable files,
and corrected outdated parameters.

� We described the decryption algorithms in detail and have
released all decryption scripts through GitHub.1

The remainder of this paper is structured as follows. Section 2
introduces existing research. Section 3 presented a forensic
analysis methodology for instant messenger. Section 4 applies the
analysis methodology to messengers and details the algorithms
and parameters that we found. Section 5 provides evaluations
and limitations of the results. Finally, Section 6 provides con-
clusions of the study.

2. Related work

Many studies conducted forensic analysis on instant messenger.
Husain and Sridhar (2009) analyzed AIM, Yahoo! Messenger, and
Google Talk messenger in the iOS devices and found Conversation
log, Buddy list, and Plaint text password in some messengers.
Mahajan et al. (2013) investigated artifacts according to user ac-
tivities such as login and chat reception in WhatsApp and Viber
messenger on Android devices. Satrya et al. (2016) provided
analysis guidance such as logcat, packet capture, and database
artifact analysis for the private chat feature of Telegram, Line, and
Kakaotalk messenger on Android devices. Chang and Chang (2019)
set different configuration environments for Line Messenger in
Windows 10 and analyzed artifacts, but could not decrypt the
encrypted database. These studies analyzed messenger artifacts,
but unencrypted artifacts were analyzed. Even when encrypted
files existed, these studies did not try to analyze the decryption
algorithm.

Many studies have been conducted to decrypt encrypted data
stored by instant messengers. Cortjens et al. (2011) found that the
WhatsApp database file is always encrypted using the same key in
the Android WhatsApp application. Anglano et al. (2016) founded
an algorithm to decrypt the database using the passphrase set by
the user and found a method to retrieve the password from volatile
memory in the ChatSecure application on Android devices. Wu
et al. (2017) described how to decrypt WeChat’s encrypted data-
base. Choi et al. (2019) found that encrypted databases of KaKaoTalk
and NateOn in Windows environment can be decrypted without a
user password, and that the database key of QQmessenger is stored
in an external server. Kim et al. (2020) revealed the decryption
algorithm of the database of telegram X and BBM-Enterprise
messenger in Windows 10, MacOS mojave, Android, and iOS.

There are several studies on Signal and Wickr, which are the
subject of this paper. Azhar et al. (2020) analyzed the Signal
messenger in the rooted Android phone using Oxygen Forensic
for Android, but they did not obtain any data on conversations
and account information. Kaczy�nski (2019) analyzed database
protection mechanisms of Signal, but it is insufficient to be used
for forensics; The author has not even found the database
decryption algorithm. Barton and Azhar (2016), and Azhar and
Barton (2017) discovered the encrypted database in the Wickr
messenger and found that internal files with the ‘.wic’ extension
were used for encryption but could not success to decrypt the
database file. Kim et al. (2021) discovered Wickr’s database and
multimedia file decryption algorithm on Android and iOS devices.
However, we found that some parameters became out of date as
the Wickr version was upgraded. In addition, The method pre-
sented in that paper could not decrypt files without the user’s
password.
1 https://github.com/hunjison/Messenger-Forensics.

2

Meanwhile, there have been attempts to automate the analysis
of database decryption. Zhang et al. (2020) has automated the
analysis of the database encryption method by applying the prob-
ability model to Amandroid, which is Android application analysis
framework for analyzing data flows. However, this study does not
appear to be effective for analyzing our messengers. In the case of
multimedia file and log file encryption, unlike the case of database
encryption, the function used for encryption and the path of the
encrypted file are not predictable. In order to use the suggested
search algorithm, manual analysis is required to obtain the neces-
sary information. In addition, it is impossible to analyze Wickr
because Wickr use its own native library for all encryption. Finally,
considering that the source code was not disclosed in this study,
and all source code of Signal and Threema are disclosed, we decided
that manual analysis would be more efficient.

3. Analysis methodology

We performed forensic analysis on Signal, Wickr, and Threema
messengers on the Android devices. The criteria for selecting
messengers are as follows. All of these messengers default to end-
to-end encryption and encrypt not only databases but also multi-
media files such as images, videos, and documents. They also
support the messenger lock feature that requires password or
fingerprint authentication when opening the app. Our goal is to
decrypt all encrypted files of Signal, Wickr, and Threema. If
possible, we tried to decrypt without the user’s password, even
when the user enabled the messenger lock feature. This section
introduces our method for systematic analysis.

3.1. Data acquisition

Files created by messengers are saved in Internal storage and
External storage of the Android device. The path of Internal storage
is ‘/data/data/<PACKAGE>’, <PACKAGE>means the package name of
the messenger app. The path of External storage is ‘/storage/
emulated/0/’, and the path may change depending on the device.
We will call the path of Internal storage ‘INTERNAL’ and the path of
External Storage ‘EXTERNAL’.

We tried to acquire data from both rooted and unrooted devices.
We were able to acquire INTERNAL and EXTERNAL data through
Android Debug Bridge (ADB) on the rooted device. On the unrooted
device, however, we could only get EXTERNAL data via ADB. We
tried several methods to acquire INTERNAL data from unrooted
devices. We tried to back up the device using ADB Backup, Smart
Switch, and Google Drive mobile Backup, but it failed because the
backup files did not include our messenger’s INTERNAL data (Some
INTERNAL data from other apps were included). We also tried to
root the device to extract data from unrooted device. Almehmadi
and Batarfi (2019); Boueiz (2020) have succeeded in one-click
rooting using applications such as KingoRoot and software such
as Dr.Fone, and also succeeded in rooting by installing a custom
ROM using a custom recovery image such as TWRP. However, on
the devices used in our experiments (see the device specifications
below), all these methods failed except the method using Magisk.
Magisk is a suite of open source software for customizing Android,
which has a feature that provides root access to user. Magisk re-
quires a full data wipe to root Samsung devices with Android 9.0 or
higher (Installation ofMagisk). Data cannot be extracted because all
data is wiped during the rooting process. Therefore, our attempt to
extract data by rooting the device failed.

We found a way to acquire INTERNAL data through the
“Messenger Backup Migration”. Signal, Wickr, and Threema both
have the messenger backup function, which transfers all conver-
sations from the old device to the new device. To acquire INTERNAL

https://github.com/hunjison/Messenger-Forensics

J. Son, Y.W. Kim, D.B. Oh et al. Forensic Science International: Digital Investigation 40 (2022) 301347
data using the backup function, we need 1 unrooted device and 1
rooted device: the unrooted device contains the data we want to
analyze, and the rooted device will contain the backup data. We
create a backup file in the messenger on the unrooted device and
move this file to the rooted device. Then, we install the messenger
application on the rooted device and restore the backup file to the
application. We can obtain INTERNAL data from the rooted device
to PC through ADB. Fig. 1 shows the process of restoring the IN-
TERNAL data.

For analysis, we used two unrooted and three rooted devices,
unrooted are Galaxy S10 5G with Android OS 9 and Galaxy A20e
with Android OS 10, rooted are Galaxy A20e with Android OS 11
and Nox emulators with Android OS 7 and 9. We assumed that we
knew the Android device’s lock password (fingerprint or PIN). The
instant messenger that we analyzed were Signal v5.19.4, Wickr Me
v5.84.6, Threema v4.55 downloaded from the Google Play Store.

3.2. Data listing

We have collected and listed all encrypted files such as data-
bases, multimedia files, log files, and configuration files. We tried to
get as much hint as possible from the extracted data to facilitate the
analysis of the next step. In all 3 messengers, database files were
located in the INTERNAL/databases folder. Multimedia files were
located in the INTERNAL or EXTERNAL, but it was not difficult to
find them because of the large file size. Binary data that appeared to
be used for decryption existed as XML files in the INTERNAL/
shared_prefs folder or as binary files in the INTERNAL/files folder.
We opened and checked the contents of the collected files and
excluded empty or unrelated files from the list. We tried to list the
original file names that we found, and if there were multiple files
with similar format, only one was listed with asterisk (*). In addi-
tion, we observed file changes according to user actions (e.g.,
sending or receiving messages, reading messages) or user settings
(e.g., messenger lock).

3.3. Decryption process analysis

We used static analysis and dynamic analysis to find the
decryption flow of the messenger. For static analysis, Android
Studio was used when themessenger was open source, and JEB and
IDAwere used when the messenger was not open source. Based on
the information obtained in the previous step, we could set the
starting point of static analysis. For dynamic analysis, Frida was
used. Dynamic analysis has been very helpful in reducing the
Fig. 1. Messenger Backup Migration from unrooted device.

3

analysis time because we can check the parameters and return
values of functions directly. We used Android Studio v4.2.2, Frida
v15.0.6, IDA Pro v7.2, and JEB Decompiler 3.0.0 for analysis.

3.4. Verification

We wrote a decryption script based on the analysis results. We
verified the script by opening the database with the derived key
and decrypting the multimedia, log, and preferences files. SQLCi-
pher, a database encryption module used by all three messengers,
requires PRAGMA values for decryption. We verified the PRAGMA
values using DB Browser for SQLite v3.12.2. We also checked
whether the decrypted multimedia files were exactly the same as
the original files. In the case of log and preference files, We checked
whether the files were successfully decrypted and listed the in-
formation that we can extract from these files.

In the next chapter, we conduct a case study on three messen-
gers using the analysis methodology presented here.

4. Messenger analysis

4.1. Case 1: Signal

Signal is a free, open source messenger developed by the Signal
Technology Foundation. The Electronic Frontier Foundation (EFF)
includes Signal in its Surveillance Self-Defense Guide. Twitter
CEO Jack Dorsey in 2020 and SpaceX and Tesla CEO Elon Musk in
2021, respectively, mentioned Signal on Twitter, resulting in a surge
in downloads. Signal has more than 50 million downloads on the
Google Play Store. Signal supports Group chats, as well as group
voice and video calls, and uses the Signal protocol to perform end-
to-end encryption for all communications (Signal homepage).
Signal uses SQLCipher to encrypt SQLite database, and stores file
attachments and media as encrypted blobs within the application
sandbox (Signal-Blog, 2020). Signal supports the messenger lock
feature, which allows users to enter the password, pin, or finger-
print used by the Android device when opening the messenger.

4.1.1. Data listing
The package name of Signal is ‘org.thoughtcrime.securesms’. We

listed files that we found from the messenger’s internal and
external storage in the Table 1. There were four SQLCipher-
encrypted database files, and ‘.db-shm’ and ‘.db-wal’ file also exis-
ted for each database. Multimedia files were encrypted and stored
in the ‘app_parts’ folder. Cache files were also encrypted and stored
in the ‘cache/image_manager_disk_cache’ folder. Multimedia files
are created when we send or receive them, while cache files are
created when they are displayed on the screen. ‘journal’ file con-
tains logs of cache files. Log files were encrypted, divided into
several files. In some cases, log files existed as a database, ‘signal-
logs.db’. We found several binary data that seemed to be used for
decryption inside ‘files’ folder and ‘shared_prefs’ folder. There was a
small change in the files depending onwhether the messenger lock
feature was used, but it was not related to the decryption.

4.1.2. Decryption process analysis
We describe Signal’s step-by-step decryption process in Table 2.

4.1.2.1. Database decryption (Step1). Signal uses the Android Key-
store to protect the encryption key. Android Keystore supports
Extraction prevention, which ensures keys come out of secure
hardware and prevents keys from entering the application process.
So we cannot extract the keys directly from the Android Keystore.
Sabt and Traor�e (2016) studied the threat model of attacking the
Android Keystore through a malicious application. Kasagί annh2

https://support.signal.org/hc/en-us/articles/360007318911-How-do-I-know-my-communication-is-private-

Table 1
Data listing of signal.

File Path File name

databases INTERNAL/databases/ signal-jobmanager.db
signal-key-value.db
signal-megaphone.db
signal-logs.db (do not always exist)
signal.db

files INTERNAL/files/ *PersistedInstallation.W0RFRk ... lmMjY2.json
multimedia INTERNAL/app_parts/ *part2285170834062364792.mms
preferences INTERNAL/shared_prefs/ SecureSMS-Preferences.xml

org.thoughtcrime.securesms_preferences.xml
cache INTERNAL/cache/image_manager_disk_cache/ *13ff1b ... f3cf51.0

journal
INTERNAL/cache/log/ *log-1626760079310

backup EXTERNAL/Backups *signal-2021-07-27-18-55-04.backup

Table 2
Signal’s decryption process.

Step Function Algorithm Parameter

1 Key generation (database, multimedia, log) AES256-GCM-DECRYPT(c, k, i) c: ciphertext k authentication tag(both from XML file)
k: key from Android Keystore
i: iv from XML file

2 Key generation for multimedia decryption HMAC-SHA256(k, d, l) k: key from Step1 (modernKey)
d: data_random from database
l: length (fixed to 32)

3 Multimedia decryption AES256-CTR-DECRYPT(c, k, n) c: ciphertext from .mms file
k: key from Step2
n: nonce (fixed to 0)

4 Log decryption AES256-CBC-DECRYPT(c, k, i) c: ciphertext from log file
k: key from Step1 (LogKey)
i: iv from log file

J. Son, Y.W. Kim, D.B. Oh et al. Forensic Science International: Digital Investigation 40 (2022) 301347
(2018) studied how to import key pairs used in other apps through
a rogue app. With reference to these two studies, we developed an
app that can steal the key of Signal’s Android Keystore. Because of
Extraction prevention, we designed the app to do Step1 decryption
of Table 2 with that key as we cannot extract the key directly from
Android Keystore.

The encrypted database name of the Signal is ‘signal.db’. To
generate the database decryption key, we need to obtain a
‘pref_database_encrypted_secret’ value from ‘org.thoughtcr
ime.securesms_preferences.xml’ file. This value is a JSON string
with the ‘data’, ‘iv’ as a key, and a base64-encoded data as a
value. The ‘data’ value contains the ciphertext and the
authentication tag of AES256-GCM, and the ‘iv’ value contains
the initial vector (IV). The key for database decryption is ob-
tained from Android Keystore as mentioned above. We can
obtain the database decryption key by performing AES256-GCM
decryption. This decryption process is the same for multimedia
decryption and log decryption. We developed an app to extract
the key from the Android Keystore and perform decryption as
shown in Fig. 2.

When the Android API level is lower than 23, we can get the
database key from ‘pref_database_unencrypted_secret’. Since this
value is not encrypted, it can be used directly as a database key.
4.1.2.2. Multimedia decryption (Step2, Step3). To get the multi-
media decryption key, we need a modernKey and a data_random
value. We can get the base64 encoded modernKey by performing
Step1 decryption on the ‘pref_attachment_encrypted_secret’ value as
shown in Fig. 3. We can get the data_random value from inside the
decrypted database. Using modernKey as a key and data_random
value as data, performing the HMAC-SHA256 operation, we can
calculate the multimedia decryption key. Using this key, we can
4

obtain the original multimedia file by decrypting the ‘.mms’ file
with AES256-CTR. The initial vector(IV) is fixed to 0.
4.1.2.3. Log decryption (Step4). We can get the log decryption key
by performing Step1 decryption on ‘pref_log_encrypted_secret’. The
encrypted log file has a structure inwhich iv, length, and ciphertext
are repeated as shown in Fig. 4. We can obtain the original log files
by repeatedly performing AES256-CBC decryption on each
encrypted log file. When the log file exists as a database, we can use
the database key obtained in Step1.
4.1.3. Verification
Signal’s database key is a 64-length hex string converted from a

32-byte byte array. Through static code analysis, we could find the
PRAGMA value of SQLCipher.

� PRAGMA cipher_default_page_size ¼ 4096
� PRAGMA cipher_default_kdf_iter ¼ 1
� PRAGMA cipher_hmac_algorithm ¼ HMAC_SHA1
� PRAGMA cipher_kdf_algorithm ¼ PBKDF2_HMAC_SHA1

Using these PRAGMA values, we could decrypt the database as
shown in Fig. 5. In the ‘sms’ table, we could found text data sent and
received by the user. In the ‘part’ table, we could find information
related multimedia files.

In the ‘part’ table of the decrypted database, one row contains
data for one multimedia file. We can get the file path from the
‘_data’ field, the original file name from the ‘file_name’ field, and the
data_random from the ‘data_random’ field. As a result of decrypting
the multimedia files, we found that the decrypted files are identical
to the original files except for the image files. Image files appear to
be compressed during transmission. Fig. 6 shows the result of

Fig. 2. Extract Android Keystore by developing an application.

Fig. 3. How to obtain modernKey

Fig. 4. A Structure of Signal’s encrypted log files.

J. Son, Y.W. Kim, D.B. Oh et al. Forensic Science International: Digital Investigation 40 (2022) 301347

5

Fig. 5. Signal’s database decryption.

Fig. 6. Signal’s multimedia file decryption.

Fig. 7. A structure of Signal’s decrypted log file.

J. Son, Y.W. Kim, D.B. Oh et al. Forensic Science International: Digital Investigation 40 (2022) 301347

6

J. Son, Y.W. Kim, D.B. Oh et al. Forensic Science International: Digital Investigation 40 (2022) 301347
successful decryption of multimedia files.
We also succeeded in decrypting log files. Signal’s log files

contain information on the user’s time and behavior of using Signal,
which is important for tracking the user’s behavior. Fig. 7 shows the
structure of the decrypted log files.

4.2. Case 2: Wickr

Wickr is a free instant messenger developed byWickr Inc. Wickr
met all security standards set forth by the National Security Agency
in 2020. Recently, Wickr Inc was acquired by Amazon in June 2021.
Although Wickr has many releases, Wickr Me, Wickr Pro, Wickr
RAM, andWickr Enterprise, Kim et al. (2021) have shown that there
was no difference in the type and structure of data stored on local
devices. In this paper, we conduct our analysis based onWickrMe, a
free messenger that people use the most. Wickr Me has been
downloaded more than 5 million times on the Google Play Store.
Wickr supports end-to-end encryption for all text chat, file transfer,
and audio/video communications, and provides Expiration and
Burn-on-read functions that automatically delete messages. Wickr
supports messenger lock, which allows users to log in using their
password when opening the app.

4.2.1. Data listing
The package name ofWickr is ‘com.mywickr.wickr2’, and the files

that could be found from the messenger’s internal and external
storage were listed in Table 3. The name of the encrypted database
file was ‘wickr_db’, and ‘.db-shm’ and ‘.db-wal’ files existed. All files
in the INTERNAL/files/folder were encrypted.We assumed that ‘.wic’
files were data used for decryption and that ‘.prefs’ files were
encrypted preference files. Multimedia files were also encrypted
Table 3
Data listing of wickr.

File Path File name

databases INTERNAL/databases/ wickr_db
files INTERNAL/files/ kck.wic

kcd.wic
sk.wic
ds.wic
prefs_prefs.wic
prefs_registration.prefs
prefs_migrationPrefs.prefs
prefs_proxyConfig.prefs
prefs_sso.prefs
prefs_com.mywickr.wickr2_preferences

multimedia INTERNAL/files/enc/ *6f3533a2-5314-4006-883d-ede3507f23af
log INTERNAL/files/logs/ *Jul_28_2021.log

Table 4
Wickr’s decryption process.

Step Function Algorithm

1 Devinfo generation SHA256(UUID(MD5(a)))
*described in Table 5.

2 1st database key generation AES256-GCM-DECRYPT(c,k,i)

3 2nd database key generation AES256-GCM-DECRYPT(c,k,i)

4 Multimedia Decryption AES256-GCM-DECRYPT(c,k,i)

5 Preferences decryption AES256-GCM-DECRYPT(c,k,i)

7

and had names in universally unique identifier (UUID) format.
Multimedia files were created when we read or sent messages. Log
files were saved in plain text, and their name could be created in
various languages depending on the system language of the
Android device. Some files existed in the cache folder and the
preference folder, but they were not related to encryption or con-
tained empty values. When the user enables the messenger lock
feature, the data of the ‘prefs_com.mywickr.wickr2_preferences’ and
‘prefs_prefs.wic’ files are changed.
4.2.2. Decryption process analysis
We describe Wickr’s step-by-step decryption process in Table 4.
4.2.2.1. Database decryption (Step1, Step2, and Step3). Wickr has
two loginmethods: i) password login and ii) automatic login.When
the user sets the messenger lock feature, password login is acti-
vated. Kim et al. (2021) revealed the decryption algorithm for
password login, which requires the password as a parameter. The
password is set by the user in Wickr messenger, so it is difficult to
obtain it without the user’s cooperation. We found the decryption
algorithm for automatic login. In the algorithm, the user password
is not required, so we can extract keys from only the files inside the
device. Moreover, even if the user changes the login method,
automatic login to password login, the decryption algorithm that
we found still works. This is because Wickr does not delete files
used for automatic login, and because both login methods generate
the same database encryption key. Automatic login is the default
setting in Wickr.

Wickr stores the database key with double encryption. The key
for the first decryption is devinfo, which is a value created from
android_id in the Android system. The android_id value can be ob-
tained by searching for the package name in the ‘/data/system/users/
0/settings_ssaid.xml’ file. The process to convert android_id to
devinfo is as follows, and can be seen in Table 5. The android_id
value is changed to UUID format after MD5 hashing. In the gener-
ated UUID data, offset 14 is changed to 3, and offset 19 is changed to
8, 9, a, or b according to the remainder of the dividing the value by
4. Finally, by hashing the generated UUID to SHA256, we can get the
devinfo value. We found this process by hooking the function and
experimenting with about 10000 cases, and there were no
exceptions.

The first decryption to get Wickr’s database key is AES256-GCM
decryptionwith devinfo as key and kcd (data of kcd.wic) as data. kcd
includes ciphertext, authentication tag, and iv, and the structure is
as shown in Fig. 8. The second decryption is also AES256-GCM
decryption using kck (data of kck.wic) as the key and the value
derived by performing the first decryption (Step2 in Table 4) as
Parameter

a: android_id

c: ciphertext k authentication tag(both from kcd.wic)
k: devinfo from Table 5.
i: iv from kcd.wic
c: ciphertext k authentication tag(both from step1)
k: kck from kck.wic
i: iv from step1
c: ciphertext k authentication tag(both from encrypted multimedia file)
k: key from messagePayload data in database
i: iv from encrypted multimedia file
c: ciphertext k authentication tag(both from each pref)
k: devinfo from Table 5.
i: iv from each pref

https://media.defense.gov/2020/Aug/14/2002477670/-1/-1/0/CSI_%20SELECTING_AND_USING_COLLABORATION_SERVICES_SECURELY_SHORT_20200814.PDF

Table 5
The process of calculating devinfo

Description Example

Extract android_id android-4d26601eb9bedfef
Do MD5 hash b2792f62f9c288e9385de263989b1be8
Convert to UUID format b2792f62-f9c2-88e9-385d-e263989b1be8
Substitute b2792f62-f9c2-38e9-b85d-e263989b1be8
Do SHA256 hash f645a3 ... 80f6a2

J. Son, Y.W. Kim, D.B. Oh et al. Forensic Science International: Digital Investigation 40 (2022) 301347
data. Since this value has the same structure as kcd, we can decrypt
it in the same way. After performing these two decryptions, we can
obtain the database key.

4.2.2.2. Multimedia decryption (Step4). The decryption algorithm
for Wickr’s multimedia files has already been revealed in the pre-
vious study (Kim et al., 2021). When we tested the revealed
decryption algorithm, we found that it still works well.

4.2.2.3. Preferences decryption (Step5). Preferences file means 6
files with ‘pref’ in the name among the files listed in Table 3. The
decryption key is devinfo calculated in Table 5. We can get the data
from each prefs file, and the structure of the data is the same as in
Fig. 8. We can obtain the original file by performing AES256-GCM
decryption on 6 preferences files.

4.2.3. Verification
The SQLCipher PRAGMA values of Wickr are the same as the

default PRAGMA values of SQLCipher 4, and those values are as
follows.

� PRAGMA cipher_default_page_size ¼ 4096
� PRAGMA cipher_default_kdf_iter ¼ 256000
� PRAGMA cipher_hmac_algorithm ¼ HMAC_SHA512
� PRAGMA cipher_kdf_algorithm ¼ PBKDF2_HMAC_SHA512
Fig. 8. The structu

Fig. 9. Wickr’s datab

8

According to the results of the previous study (Kim et al., 2021),
these values were the same as the default PRAGMA values of
SQLCipher 3, but we confirmed that they were outdated as the app
version was upgraded. Wickr’s database decryption key is a 66-
character hex string converted from a 33-byte byte array which is
resulting from Step2 of Table 4. Using the database key and PRAGMA
value, we can decrypt the database as shown in Fig. 9.

In the ‘Wickr_Message’ table of the decrypted database, we
found that each row contains information about each multimedia
file. We can extract the original file name from the ‘cachedText’
field, and the encrypted file name, the decryption key from the
‘messagePayload’ field. We succeeded in decrypting the multimedia
files as shown in Fig. 10.We have verified that all types of decrypted
multimedia files are identical to the original files. We also suc-
ceeded in decrypting the preferences file. Table 6 lists information
that we can obtain from preferences files.
4.3. Case 3: Threema

Threema is a paid open source instant messenger developed by
Threema GmbH. Threema took second place among 18 messenger
apps evaluated by German consumer group Stiftung Warentest in
2015 (StiftungWarentest). Threema has its ownmessaging protocol
like Signal and WhatsApp, and active research is being conducted
on its security (R€osler et al., 2018; R€osler, 2018; Scheitle et al., 2016).
Threema ismainly used in Switzerland and currently hasmore than
10 million users (Jungfer, 2021). Threema has more than 1 million
downloads based on the Google Play Store. Threema encrypts all
communications end-to-end, including group messages, photo-
s,videos, files, and voice calls. Threema includes its own app-
specific encryption based on AES-256 to protect stored messages
and media. Threema supports the messenger lock feature, which is
a login method using the password when opening the app.
re of kcd.wic

ase decryption.

https://www.test.de/Messenger-Apps-Ein-Aussenseiter-schlaegt-WhatsApp-Co-4884453-4885555/

Fig. 10. Wickr’s multimedia file decryption.

Table 6
Wickr’s preference files.

File Name Contents

prefs_proxyConfig.prefs Proxy configuration and URL of remote server
prefs_prefs.wic Name of the user account, count of force

suspension, or login failure
prefs_com.mywickr.wickr

2_preferences
Most settings for using the app (e.g. screenshots,
previews)

prefs_registration.prefs empty
prefs_sso.prefs empty
prefs_migrationPrefs.prefs empty

Table 7
Data listing of threema.

File Path

databases INTERNAL/databases/

files INTERNAL/files/

multimedia EXTERNAL/Android/data/ch.threema.app/fil

preferences INTERNAL/shared_prefs/
cache INTERNAL/cache/image_manager_disk_cach

backup EXTERNAL/Threema/Backups/

Table 8
Threema’s decryption process.

Step Function Algorithm

1 Passphrase key generation PBKDF2-HMAC-SH

2 Database key generation (k XOR o) XOR p

3 Multimedia decryption AES256-CBC(c, k, i

J. Son, Y.W. Kim, D.B. Oh et al. Forensic Science International: Digital Investigation 40 (2022) 301347

9

4.3.1. Data listing
The package name of Threema is ‘ch.threema.app’, and the files

that we could find from the messenger’s internal and external
storage were listed in Table 7. There were two database files, and
the name of the encrypted database file was ‘threema4.db’. ‘.db-shm’

and ‘.db-wal’ file did not exist. Another database file, ‘threema-
nonce-blob4.db’, was not encrypted, and there were several nonce
values inside. The files in the INTERNAL/files/ folder were all binary
data except for ‘device_id’. We assumed that these data would be
used in the decryption process. Multimedia files were encrypted
and stored as hidden files in the EXTERNAL/Android/data/
File name

threema4.db
threema-nonce-blob4.db
device_id
key.dat
msgqueue.ser
.crs-pref_message_drafts
.crs-pref_push_token
.crs-pref_threema_safe_masterkey
.crs-private_key

es/data *.0caccd ... 349b6c
*.0caccd ... 349b6c_T
ch.threema.app_preferences.xml

e/ *778ee7 ... b98e25.0
journal
*threema-backup_59NMJV ... 282863_1.zip

Parameter

A1(p, s, i, d) p: passphrase
s: salt from key.dat
i: iteration(fixed to 10,000) d: dkLen(fixed to 256)
k: protected key from key.dat
o: obfuscation key(fixed)
p: Passphrase key from Step1

) c: ciphertext from encrypted multimedia file
k: key from step2
i: iv from encrypted multimedia file

Fig. 11. The structure of key.dat.

Fig. 12. A structure of Threema’s encrypted multimedia file.

Fig. 13. Threema’s database decryption.

J. Son, Y.W. Kim, D.B. Oh et al. Forensic Science International: Digital Investigation 40 (2022) 301347
ch.threema.app/files/data/, and we assumed that multimedia files
with ‘_T’ in the name were thumbnails. Cache data existed in the
‘cache/image_manager_disk_cache’ folder as in Signal messenger. A
backup file is created when a user runs a backup in the app. We
found that the data of the ‘key.dat’ and ‘msgqueue.ser’ file are
changed when using the messenger lock feature.

4.3.2. Decryption process analysis
We describe Threema’s step-by-step decryption process in

Table 8.

4.3.2.1. Database decryption (Step1, Step2). The Threema database
key can be obtained from the file ‘key.dat’, whose structure is shown
in Fig.11. The Protected Flag changes depending onwhether the user
enable messenger lock feature. If the database key is unprotected
(value is 0), the result of XORing the Protected Key with the obfus-
cation key becomes the database key. The obfuscation key is a fixed
value, which is hardcoded in the app. If the database key is pro-
tected (value is not 0), the result of an additional xor operationwith
passphraseKey is the database key. The algorithm for calculating
10
passphraseKey is PBKDF2-HMAC-SHA1. The Arguments of PBKDF2-
HMAC-SHA1 are the user’s passphrase and the salt from ‘key.dat’,
and some fixed values. Threema’s database cannot be decrypted
without the user passphrase because the ‘key.dat’ file is changed
depending on the messenger lock feature.

4.3.2.2. Multimedia decryption (Step3). Threema’s multimedia
decryption key is the same as the database decryption key. In the
encrypted multimedia file, 16 bytes from offset 0 are used as iv, and
the rest of the data is used as ciphertext. The structure of the
encrypted multimedia file can be seen in Fig. 12. By performing
AES256-CBC decryption on these values, we can decrypt the
multimedia file. In the case of thumbnail files, the decryption al-
gorithm and parameters are the same as original files.

4.3.3. Verification
The Threema database decryption key is a 67-character string

with x“" added to the 32-byte byte array from Step 2 of the Table 8.
For example, when the value of Step2 is \x00\x01 . . . \x31, the
database decryption key is x“0001 . . . 31”. The PRAGMA value of

Fig. 14. Threema’s multimedia file decryption.

J. Son, Y.W. Kim, D.B. Oh et al. Forensic Science International: Digital Investigation 40 (2022) 301347
SQLCipher is as follows, and we were able to successfully decrypt
the database as shown in Fig. 13.

� PRAGMA cipher_default_page_size ¼ 4096
� PRAGMA cipher_default_kdf_iter ¼ 1
� PRAGMA cipher_hmac_algorithm ¼ HMAC_SHA512
� PRAGMA cipher_kdf_algorithm ¼ PBKDF2_HMAC_SHA512

In the ‘message’ table of the decrypted database, we found that
each row contains information about each multimedia file. We can
extract the original file name and mime type from the field ‘body’,
and the encrypted file name from the field ‘uid’. Thr result of
decrypting multimedia file is Fig. 14. We found that the names of
the image and video files were changed to the format ‘yyyyMMdd-
HHmmssSSS’ (year, month, day, hour, minute, second, and milli-
second). Image files are different from the original files because
they are compressed when sending messages. However, when the
Table 9
Summarize.

Database key generation algorithm Database decryption
algorithm

Multimed

Signal AES256-GCM-DECRYPT(p, k) p:
"pref_database_encrypted_secret" k:
android keystore

SQLCipher
page_size: 4096
kdf_iter: 1
hmac: HMAC_SHA1
kdf:
PBKDF2_HMAC_SHA1

A ¼ AES25
key ¼ HM
DECRYPT(
"pref_atta
k: android
d: data_ra
l: length(fi
m: multim
n: nonce(

Wickr A ¼ AES256-GCM-DECRYPT
(kcd, d)
AES256-GCM-DECRYPT(A, kck)
kcd: kcd.wic
d: devinfo
kck: kck.wic

SQLCipher
page_size: 4096
kdf_iter: 256000
hmac: HMAC_SHA512
kdf:
PBKDF2_HMAC_SHA512

AES256-G
m: multim
k: key fro

Threema A ¼ PBKDF2-HMAC-SHA1(p, s, i, d)
(k XOR o) XOR A
p: password
s: salt from key.dat
i: iteration(fixed to 10000)
d: dkLen(fixed to 256)
k: protected key from key.dat
o: obfuscation key(fixed)

SQLCipher
page_size: 4096
kdf_iter: 1
hmac: HMAC_SHA512
kdf:
PBKDF2_HMAC_SHA512

AES256-C
d: databas
m: multim

11
user sent the image ‘as a file’, it was the same as the original. The
rest of the multimedia files were almost same as the original,
because of the padding added to the end of the file.

4.4. Summarize

Table 9 summarizes the analysis results of this paper. In this
table, algorithms and parameters are simply described, thus it is
easy to compare the decryption methods between messengers.

5. Discussion

Although Signal, Wickr, and Threema have over 50 million, 5
million, and 1 million downloads respectively on Google Play Store,
forensic research on their messengers is insufficient. We extracted
data from both unrooted and rooted devices and performed static
and dynamic analysis for finding the decryption algorithms of
ia decryption algorithm File decryption algorithm Data
required for
decryption

6-GCM-DECRYPT(p, k)
AC-SHA256(A, d, l) AES256-CTR-
m, key, n) p:
chment_encrypted_secret"
keystore
ndom
xed to 32)
edia file

fixed to 0)

key ¼ AES256-GCM-
DECRYPT(p, k)
AES256-CBC-DECRYPT(l,
key)
p:
"pref_log_encrypted_secret"
k: android keystore
l: log file

Android
keystore

CM-DECRYPT(m, k)
edia file

m messagePayload

AES256-GCM-DECRYPT(p,
k)
p: pref file
d: devinfo

Android_id

BC(d, m)
e decryption key
edia file

No file User
password

J. Son, Y.W. Kim, D.B. Oh et al. Forensic Science International: Digital Investigation 40 (2022) 301347
Signal, Wickr, and Threema. As a result, we could obtain the
decrypted database, multimedia, log, and preferences files from the
extracted data. Forensic investigators can use these results to
analyze Signal, Wickr, and Threema. They will be able to obtain
evidence from the decrypted conversation history and photos, and
will be able to obtain clues to infer the user’s behavior from the
decrypted log files.

Our paper has advanced results compared to previous studies. In
the case of Signal, we developed an application to extract keys from
Android Keystore. We succeeded in decrypting database, multi-
media, and log files. In the case of Wickr, we found a decryption
method without a user’s password, found outdated parameters,
and expanded the decryption range to the preference file. In the
case of Threema, we succeeded in decrypting database, multimedia
files. To the best of our knowledge, there are no other studies on
Threema’s decryption algorithm.

Our paper also has limitations. If we cannot pass the messenger
lock, we cannot create a messenger backup. Since a password is
required to pass the messenger lock, we cannot obtain data from an
unrooted device without the password. In this case, forensic in-
vestigators should consider other advanced data acquisition
methods (Feng et al., 2018, 2019). In Wickr, messenger backup has
not been tested as it requires the Wickr Pro network administrator
to enable single sign-on (SSO). In Threema, we could get the
decrypted database and multimedia files by unzipping the
messenger backup file. However, the results of the analysis are still
meaningful because the messenger backup function can disappear
at any time.

6. Conclusions

In this paper, we present a methodology to analyze the mes-
senger’s decryption algorithm. This methodology covers the entire
process of analyzing messenger applications, from data extraction
to decryption. We extracted data from the unrooted device through
Messenger BackupMigration.We listed the extracted data to obtain
hints for analysis. We found a decryption algorithm through static
and dynamic analysis and wrote a decryption script for verification.
As a result, we could decrypt all encrypted database, multimedia,
log, and preferences files of Signal, Wickr, and Threema. Our results
broaden the range of files that we can decrypt and discover a new
decryption algorithm. The decryption scripts we have disclosedwill
be useful when forensic investigators analyze messengers. In the
future work, we plan to investigate the messenger artifacts that
change according to the user’s actions and examine the traces left
by the disappearing messages.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

Almehmadi, T., Batarfi, O., 2019. Impact of android phone rooting on user data
integrity in mobile forensics. In: 2019 2nd International Conference on Com-
puter Applications & Information Security (ICCAIS). IEEE, pp. 1e6.

Android Keystore. Android keystore system android developers. https://developer.
android.com/training/articles/keystore?hl¼ko. (Accessed 20 August 2021).

Anglano, C., Canonico, M., Guazzone, M., 2016. Forensic analysis of the chatsecure
instant messaging application on android smartphones. Digit. Invest. 19, 44e59.

Azhar, M.H.B., Barton, T.E.A., 2017. Forensic Analysis of Secure Ephemeral Messaging
Applications on Android Platforms, in: Inter- National Conference on Global
Security, Safety, and Sustainability. Springer, pp. 27e41.
12
Azhar, H., Cox, R., Chamberlain, A., 2020. Forensic investigations of popular
ephemeral messaging applications on android and ios platforms. Int. J. Adv.
Secur. 13, 41e53.

Barton, T., Azhar, M., 2016. Forensic Analysis of the Recovery of Wickr's Ephemeral
Data on Android Platforms, in: the First International Confer- Ence on Cyber-
Technologies and Cyber-Systems. IARIA, pp. 35e40.

BBC, 2021. Anom: hundreds arrested in massive global crime sting using messaging
app - bbc news. https://www.bbc.com/news/world-57394831. (Accessed 30
August 2021).

Boueiz, M.R., 2020. Importance of rooting in an android data acquisition. In: 2020
8th International Symposium on Digital Forensics and Security (ISDFS). IEEE,
pp. 1e4.

Chang, M.S., Chang, C.Y., 2019. line messenger forensics on Windows 10. J. Comput.
30, 114e125.

Choi, J., Yu, J., Hyun, S., Kim, H., 2019. Digital forensic analysis of encrypted database
files in instant messaging applications on windows operating systems: case
study with kakaotalk, nateon and qq messenger. Digit. Invest. 28, S50eS59.

Cortjens, D., Spruyt, A., Wieringa, W., 2011. WhatsApp database encryp- tion project
report. Technical Report. Tech. Rep. 2011. https://www.os3.nl/media/2011-2012.

Electronic Frontier Foundation(EFF). Surveillance self-defense. https://ssd.eff.org/.
(Accessed 19 August 2021).

Feng, P., Li, Q., Zhang, P., Chen, Z., 2018. Logical acquisition method based on data
migration for android mobile devices. Digit. Invest. 26, 55e62.

Feng, P., Li, Q., Zhang, P., Chen, Z., 2019. Private data acquisition method based on
system-level data migration and volatile memory forensics for android appli-
cations. IEEE Access 7, 16695e16703.

Google Play Store, a. Signal private messenger - apps on google play. https://play.
google.com/store/apps/details?id¼org.thoughtcrime.securesms&hl¼en_
US&gl¼US. (Accessed 19 August 2021).

Google Play Store, b. Threema. secure and private messenger - apps on google play.
https://play.google.com/store/apps/details?id¼ch.threema.app&hl¼en_
US&gl¼US. (Accessed 19 August 2021).

Google Play Store, c. Wickr me e private messenger - apps on google play. https://
play.google.com/store/apps/details?id¼com.mywickr.wickr2&hl¼en_
US&gl¼US. (Accessed 19 August 2021).

Husain, M.I., Sridhar, R., 2009. Iforensics: Forensic Analysis of Instant Messaging on
Smart Phones, in: International Conference on Digital Forensics and Cyber
Crime. Springer, pp. 9e18.

Jungfer, M., 2021. Number of threema users climbed to over 10 million - digitec.
https://www.digitec.ch/en/page/number-of-threema-users-climbed-to-over-
10-million-20061. (Accessed 19 August 2021).

Kaczy�nski, K., 2019. Security analysis of signal android database protec- tion
mechanisms. Int. J. Inf. Technol. Secur. 4, 63e70.

Kim, G., Park, M., Lee, S., Park, Y., Lee, I., Kim, J., 2020. A study on the decryption
methods of telegram x and bbm-enterprise databases in mobile and pc.
Forensic Science International: Digit. Invest. 35, 300998.

Kim, G., Kim, S., Park, M., Park, Y., Lee, I., Kim, J., 2021. Forensic analysis of instant
messaging apps: decrypting wickr and private text messaging data. Forensic Sci.
Int.: Digit. Invest. 37, 301138.

Kasagί annh2, G., 2018. Security Evaluation of Android Keystore. Mas- ter’s thesis.
Panεpist hmio Pεiraί u2.

Mahajan, A., Dahiya, M., Sanghvi, H., 2013. Forensic Analysis of Instant Messenger
Applications on Android Devices arXiv preprint arXiv:1304.4915.

R€osler, P., 2018. On the End-To-End Security of Group Chats in In-Stant Messaging
Protocols.

R€osler, P., Mainka, C., Schwenk, J., 2018. More is less: on the end-to-end security of
group chats in signal, whatsapp, and threema. In: 2018 IEEE European Sym-
posium on Security and Privacy (EuroS&P). IEEE, pp. 415e429.

Sabt, M., Traor�e, J., 2016. Breaking into the Keystore: A Practical Forgery Attack
against Android Keystore, in: European Symposium on Research in Computer
Security. Springer, pp. 531e548.

Satrya, G.B., Daely, P.T., Shin, S.Y., 2016. Android forensics analysis: pri- vate chat on
social messenger. In: 2016 Eighth International Conference on Ubiquitous and
Future Networks (Icufn). IEEE, pp. 430e435.

Scheitle, Q., Wachs, M., Zirngibl, J., Carle, G., 2016. Analyzing locality of mobile
messaging traffic using the matador framework. In: International Conference
on Passive and Active Network Measurement. Springer, pp. 190e202.

Signal-Blog, 2020. Storage management for signal android. https://signal.org/blog/
storage-management-for-android/. (Accessed 19 August 2021).

Statista, 2021. Most popular social networks world- wide as of july 2021, ranked by
number of active users. https://www.statista.com/statistics/272014/global-
social-networks-ranked-by-number-of-users/. (Accessed 19 August 2021).

a Wu, J.. Installation of magisk. https://topjohnwu.github.io/Magisk/install.
html#samsung-system-as-root. (Accessed 28 December 2021).

b Wu, J.. Magisk. https://github.com/topjohnwu/Magisk. (Accessed 28 December
2021).

Wu, S., Zhang, Y., Wang, X., Xiong, X., Du, L., 2017. Forensic analysis of wechat on
android smartphones. Digit. Invest. 21, 3e10.

Zhang, Y., Li, B., Sun, Y., 2020. Android encryption database forensic analysis based
on static analysis. In: Proceedings of the 4th International Conference on
Computer Science and Application Engineering, pp. 1e9.

http://refhub.elsevier.com/S2666-2817(22)00016-6/sref1
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref1
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref1
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref1
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref1
https://developer.android.com/training/articles/keystore?hl=ko
https://developer.android.com/training/articles/keystore?hl=ko
https://developer.android.com/training/articles/keystore?hl=ko
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref3
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref3
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref3
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref4
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref4
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref4
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref4
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref5
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref5
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref5
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref5
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref6
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref6
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref6
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref6
https://www.bbc.com/news/world-57394831
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref8
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref8
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref8
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref8
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref9
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref9
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref9
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref10
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref10
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref10
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref10
https://www.os3.nl/media/2011-2012
https://ssd.eff.org/
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref13
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref13
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref13
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref14
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref14
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref14
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref14
https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=ch.threema.app&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=ch.threema.app&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=ch.threema.app&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=ch.threema.app&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=ch.threema.app&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=ch.threema.app&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=ch.threema.app&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.mywickr.wickr2&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.mywickr.wickr2&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.mywickr.wickr2&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.mywickr.wickr2&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.mywickr.wickr2&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.mywickr.wickr2&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.mywickr.wickr2&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.mywickr.wickr2&hl=en_US&gl=US
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref18
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref18
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref18
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref18
https://www.digitec.ch/en/page/number-of-threema-users-climbed-to-over-10-million-20061
https://www.digitec.ch/en/page/number-of-threema-users-climbed-to-over-10-million-20061
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref20
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref20
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref20
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref20
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref21
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref21
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref21
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref22
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref22
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref22
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref23
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref23
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref23
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref23
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref24
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref24
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref25
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref25
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref25
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref26
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref26
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref26
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref26
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref26
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref26
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref27
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref27
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref27
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref27
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref27
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref28
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref28
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref28
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref28
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref29
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref29
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref29
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref29
https://signal.org/blog/storage-management-for-android/
https://signal.org/blog/storage-management-for-android/
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://topjohnwu.github.io/Magisk/install.html#samsung-system-as-root
https://topjohnwu.github.io/Magisk/install.html#samsung-system-as-root
https://github.com/topjohnwu/Magisk
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref37
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref37
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref37
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref38
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref38
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref38
http://refhub.elsevier.com/S2666-2817(22)00016-6/sref38

	Forensic analysis of instant messengers: Decrypt Signal, Wickr, and Threema
	1. Introduction
	2. Related work
	3. Analysis methodology
	3.1. Data acquisition
	3.2. Data listing
	3.3. Decryption process analysis
	3.4. Verification

	4. Messenger analysis
	4.1. Case 1: Signal
	4.1.1. Data listing
	4.1.2. Decryption process analysis
	4.1.2.1. Database decryption (Step1)
	4.1.2.2. Multimedia decryption (Step2, Step3)
	4.1.2.3. Log decryption (Step4)

	4.1.3. Verification

	4.2. Case 2: Wickr
	4.2.1. Data listing
	4.2.2. Decryption process analysis
	4.2.2.1. Database decryption (Step1, Step2, and Step3)
	4.2.2.2. Multimedia decryption (Step4)
	4.2.2.3. Preferences decryption (Step5)

	4.2.3. Verification

	4.3. Case 3: Threema
	4.3.1. Data listing
	4.3.2. Decryption process analysis
	4.3.2.1. Database decryption (Step1, Step2)
	4.3.2.2. Multimedia decryption (Step3)

	4.3.3. Verification

	4.4. Summarize

	5. Discussion
	6. Conclusions
	Declaration of competing interest
	References

