

A Security Analysis of the Signal Protocol’s Group Messaging Capabilities in
Comparison to Direct Messaging

by
Matthew Jansen

A THESIS

submitted to

Oregon State University

Honors College

in partial fulfillment of
the requirements for the

degree of

Honors Baccalaureate of Science in Computer Science
(Honors Associate)

Presented March 19, 2020
Commencement June 2020

AN ABSTRACT OF THE THESIS OF

Matthew Jansen for the degree of Honors Baccalaureate of Science in Computer Science
presented on March 19, 2020. Title: A Security Analysis of the Signal Protocol’s Group

Messaging Capabilities in Comparison to Direct Messaging.

Abstract approved:___

Michael Rosulek

Signal is a multimedia messaging application developed by OpenWhisper Systems in 2015

which allows its users to communicate securely between one another through the use of a

complex encryption scheme. The set of algorithms used in combination to provide the

services of the Signal application to their users is called the Signal Protocol. OpenWhisper

Systems has documented the direct (or peer-to-peer)messaging capabilities of the Signal

Protocol with great detail and plenty of work has been done in the security analysis of the

protocol in a two-party context, as well as group contexts to some extent; however, there is

still obscurity behind how the Signal Protocol implements group (or peer-to-group)

messaging or and if any differences in Signal's group messaging protocol, compared to direct

messaging, could result in the loss of security to any extent. In order to understand the

protocol further, we developed a modified Signal application to discover how group

messaging operations take place. Through this analysis we were able to discover that the

Signal Protocol uses direct messaging to send group messages one at a time instead of

sending one message to a server and fanning out messages to the recipients, or by using a

customized protocol. Further, we claim that Signal's group messaging implementation has no

negative impact on security properties provided to Signal's users, in comparison to direct

messaging.

Key Words: Signal, encryption, cryptography, end-to-end, messaging

Corresponding e-mail address: jansemat@oregonstate.edu

©Copyright by Matthew Jansen
March 19, 2020

A Security Analysis of the Signal Protocol’s Group Messaging Capabilities in Comparison to
Direct Messaging

by

Matthew Jansen

A THESIS

submitted to

Oregon State University

Honors College

in partial fulfillment of
the requirements for the

degree of

Honors Baccalaureate of Science in Computer Science
(Honors Associate)

Presented March 19, 2020
Commencement June 2020

Honors Baccalaureate of Science in Computer Science project of Matthew Jansen presented
on March 19, 2020.

APPROVED:

Michael Rosulek, Mentor, representing College of Electrical Engineering and Computer
Science

Yeongjin Jang, Committee Member, representing College of Electrical Engineering and
Computer Science

Dave Nevin, Committee Member, representing the Oregon Research & Teaching Security
Operations Center (ORTSOC)

Toni Doolen, Dean, Oregon State University Honors College

I understand that my project will become part of the permanent collection of Oregon State
University, Honors College. My signature below authorizes release of my project to any
reader upon request.

Matthew Jansen, Author

	 1	

1 Introduction
The Signal Protocol, developed by Open Whisper Systems, is a cryptographic algorithm which allows its
users to send and receive encrypted messages - as well as other media - from their devices that have the
application installed. What makes the Signal Protocol unique among other instant messaging applications is
its use of "end-to-end encryption." This method of encryption ensures that the data sent from one party to
another is encrypted and decrypted at the intended sender and recipient(s), rather than an intermediary host.
As it is stated on Signal’s website, "[Open Whisper Systems] can't read your messages or see your calls, and
no one else can either." The Signal Protocol accomplishes this goal by employing several prevalent
cryptographic primitives and algorithms in order to achieve specific security properties. These properties can
ensure the confidentiality, origin integrity, and message authenticity of texts and other media sent and
received using the Signal Protocol, which Open Whisper Systems implements through the Signal application.

Signal is the successor of the TextSecure encrypted chat application. Four years after its initial release in
May 2010, TextSecure V2 was released in February 2014 and included an additional feature: private group
chats1. We will define “direct messaging” as communications between two parties, while “group messaging”
entails communications between more than two parties. Having the ability to create, send and receive group-
messages is very desirable, and is a feature seen among most instant messaging applications. However, unlike
the security properties that are provided by the algorithms which support direct messaging in the Signal
Protocol, there seems to be a lack of documentation regarding the security guarantees provided by Signal's
implementation of group messaging. The purpose of this paper is to explore how the Signal Protocol is
implemented to provide group messaging, and to observe what security properties are achieved when group
messaging is executed. To do this, we will first model how we expect the Signal application to act based on
the extensive documentation of the Signal Protocol’s implementation of direct messaging, as well as model
how a malicious actor might attempt to bypass these security guarantees. Next, we will discuss how the
implementation of group messaging might deviate from direct messaging and what impact that may have on
the security properties provided by the Signal Protocol. Finally, we will observe how Signal implements
group messaging and investigate any differences by comparing and contrasting function calls and
cryptographic key use found in the actual implementation of group and direct messaging within an application
of the Signal Protocol.

2 Background
Signal provides end-to-end encrypted messaging for its users, but how did Open Whisper Systems design
their protocol to accomplish this feat? In order to answer this question, this section will serve as a basis for
learning the cryptographic primitives used in the Signal Protocol. A cryptographic primitive is a low-level
algorithm, commonly used as a building block to construct more complex cryptographic protocols. After the
purpose for these building blocks are understood, we can use these building blocks to construct the Signal
Protocol one step at a time. The Signal Protocol even uses custom-made cryptographic algorithms to
accomplish the security goals of the application, which will be covered in detail later in this section.

2.1 Security Properties
Before defining the cryptographic primitives used within the Signal Protocol, it is vital that an understanding
is built of what these building blocks are used to accomplish. Three well known security goals of any secure
messaging application include confidentiality, message authenticity and origin integrity.

• Confidentiality is the guarantee that messages sent between the two or more parties can only be
viewed by authorized individuals, and that non-intended recipients cannot view the message — this
accomplished by the use of encryption and decryption schemes.

	
1	https://signal.org/blog/private-groups/		

	 2	

• Origin Integrity is a security goal which guarantees when a user Alice receives a message from
another user Bob, Alice knows this message did in fact comes from Bob – this can be accomplished
by the use of cryptographic signatures sent between two parties.

• Message Authenticity is the guarantee that a message between two parties has not been altered in
any way by an unauthorized party – this can be accomplished by the use of message authentication
codes (MACs).

These security properties are vital to any encrypted messaging application, without these adversaries may
intercept and read messages intended for other users, impersonate another user, and/or edit the contents of
messages intended for other users.

Based on previous work [6], which examines the security guarantees provided by various other encrypted
messaging applications, we find that the Signal Protocol additionally provides forward secrecy, future
secrecy, participant consistency, destination validation, causality preservation, message unlinkability,
message repudiation and participant repudiation. We will base our definitions of each property by the
descriptions provided by Unger et al. [6], as well as Schliep and Hopper [10] as follows:

• Forward secrecy is a feature of key agreement protocols which prevents an adversary who
compromises the message keys of a target user from decrypting any past messages.

• Future secrecy is another feature of key agreement protocols which prevents an adversary who
compromises the message keys of a target user from decrypting any future messages in the
conversation to some extent.

• Participant consistency is a security trait derived from the encryption and authentication of the
message transcripts from a given conversation. This ensures that each participant in a
communication channel has the same list of members in the channel. In the context of a
conversation, this ensures that the set of members in this channel is identical for each user.

• Participant repudiation (or Deniability) relies on the encryption and authentication of message
transcripts, as well as the fact that Signal servers do not store conversation metadata. As a result,
any participant is able to deny their participation in a conversation as long as private keys are not
compromised.

• Message unlinkability is similar to the previously mentioned Participant repudiation / Deniability
trait. To define this trait, let's assume that a judge has been convinced that a participant authored a
message. Even with this assumption, having message unlinkability ensures that this fact does not
provide evidence that they authored other messages within the conversation.

• Message repudiation is similar to Message unlinkability. For a given conversation and all its
encryption/decryption keys, a user can deny that they authored a particular message.

• Destination validation is the assurance that a user can verify that they were in fact the intended
recipient of a given message from another user.

• Causality preservation is a side effect to the implementation of the Double Ratchet algorithm
within the Signal Protocol – if a message is delayed and another more-recent message is received
before the original arrives to its destination, implementations can opt to wait for the first message
to be received before decrypting the other.

The properties mentioned above describe the protections that are in place which safeguard Signal’s users. To
understand how these safeguards are implemented, we will take an in-depth look at the algorithms which
support Signal’s key distribution and message encryption functions.

	 3	

2.2 Cryptographic Primitives
 “Cryptographic primitives” are functions which act as building blocks to more advanced cryptographic
algorithms. However, before we discuss these primitives, it is essential that we first cover some basic
cryptographic notation that will be used throughout the rest of this paper:

• Input and output will relate to strings of characters which are either fed into or are the result of
(respectively) a given function.

• A function can be thought of as a routine which performs a given task – a function may have 0 or
more inputs, as well as 0 or more outputs. A function may be thought of as “deterministic” if it
returns the same result when it’s called with the same input values.

• A key can be considered either a piece of data necessary for an encryption/decryption routine, or as
a second input to a specified function. This input is not available to an adversary.

• A constant value is a fixed number which is available to an adversary.

Using encryption/decryption schemes, cryptographic signatures and message authentication codes to
accomplish confidentiality, message authentication and origin integrity is an example of using cryptographic
primitives to accomplish specific security goals. Now, we will attempt to build the Signal Protocol by
defining a few notable primitives and advancing them to produce the algorithms used in the protocol.

The first set of cryptographic primitives we will define includes a hash function and a pseudorandom
permutation (otherwise known as block ciphers) – both of which take input and provides a deterministic
output that appear to be random (in the case of block ciphers, the mappings from given inputs to their outputs
appear to be random if the key input is unknown) [3]. A hash function is a primitive which takes one input
of varying length and produces an output of fixed length, while a block cipher requires two inputs (an input
and a key) and provides a single output where both inputs and the output will be of the same length.

For hash function implementations, it is simple to generate an output from a provided input, however if the
output length is large enough, it should be considered infeasible to determine the input for a given output —
this property is known as “Pre-image resistance.” Similarly for block ciphers, it should be infeasible to
determine the input to the function, given that they key is unknown; however, unlike hash functions, block
ciphers are invertible if their key is known. Current day implementations of these primitives include the SHA-
1 and SHA-2 family of hash functions, as well as AES (Advanced Encryption Standard)
encryption/decryption implementations for block ciphers. For encryption implementations, note that the two
inputs provided include a message block and a key, in order to produce a ciphertext block.

	 4	

Figure 1: Hash Function and Pseudorandom Permutation Definitions

Moving forward, we will be simplifying our upcoming definitions for the sake of a more complete
understanding over a larger audience. The second set of cryptographic primitives build off of previously
defined constructions. The next primitive we will define is a Hashed Message Authentication Code, otherwise
known as a HMAC. This construction is commonly used to verify the integrity of a message using some pre-
determined constants, a message, and a hash function. The creation of a HMAC and an example of its use
can be noted in Figure 2.

The next construction builds off of the HMAC and is called the HMAC-based Key Derivation Function,
otherwise known as a HKDF. A key derivation function is similar to a block cipher, in that it takes several
inputs as arguments to the function, however it differs from previously mentioned primitives as a HKDF
provides multiple outputs, all of which are still indistinguishable from random. As seen in Figure 2, the
construction of a HKDF depends on the available construction of a HMAC. The implementation of these
constructions should be in accordance with their respective RFC [3, 4].

	 5	

Figure 2: HMAC and HKDF Definitions

As seen previously, encryption/decryption schemes require the users involved to only own one key. This is
called “symmetric cryptography,” as only one key is required. However, there also exists “asymmetric
cryptography,” also known as “public key cryptography,” which involves a user having two keys – one public
key that is known to all, and one private key that is known only to the individual user. Another cryptographic
primitive that employs the use of asymmetric cryptography are digital signatures. Digital signatures involve
signing a message you wish to send to another party using your private key. This way, when the other party
receives your message, they can verify the integrity of the message you sent by comparing the signature of
your message using your public key. If the computation needed to perform this signature verification matches
up with your public key, then the recipient knows the message was indeed sent by you, since you are the only
one who knows your private key. There are several implementations of digital signature algorithms, including
RSA, DSA, and elliptic curve digital signatures.

Each of the earlier-mentioned primitives are important in successfully implementing the security properties
that the Signal Protocol wishes to provide. But before we discuss how these building blocks are arranged in
order to create the Signal Protocol, we must first cover how keys can be securely transferred between users.
The concept of securely exchanging cryptographic keys over a public channel is a widely discussed topic
that has many proposed solutions, and one of the more reputable algorithms for doing so is called the "Diffie
Hellman Key Exchange Algorithm.”

	 6	

 In this algorithm, two parties wish to securely generate a symmetric key and do so using their own set of
pre-generated asymmetric keys. The algorithm generally goes as follows:

1. The users, who we’ll call Alice and Bob, first agree on a set of global constants that are publicly
available. We will name the constant that is used and transferred between Alice and Bob g.

2. Alice and Bob each take a copy of one of the global constants and perform a mathematical
operation on their copy using their private key, resulting in the output ga for Alice, and gb for Bob.

3. Alice and Bob exchange ga and gb. So now, Alice has gb and Bob has ga.
4. Alice and Bob perform the same original mathematical operation on the other party’s copy,

resulting in the output sa and sb for Alice and Bob (respectively).
5. Alice and Bob should now share the same shared secret gab, and in doing so, should have not

revealed their private key to a public channel.

Figure 3: Diffie-Hellman Key Exchange Diagram

For these key exchanges, ga and gb are referred to as “public keys.” More information regarding the
mathematical operations performed in this algorithm can be found in the original work by Diffie and Hellman
[2], as well as Rosulek [9]. In addition to Alice and Bob not having to share their asymmetric private,
according to the discrete logarithm problem [7], attempting to find the private key used by each party using
the information passed between each party during the key exchange is considered computationally infeasible
if large constants and asymmetric keypairs are. Moving forward, when we refer to computing a Diffie-
Hellman key exchange operation between two keys, such as:

𝐷𝐻(𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦!"#$% , 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦&'&),

We are referring to performing a mathematical operation on the two keys, such that the following equation
holds:

𝐷𝐻(𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦!"#$%, 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦&'&) 	≡ 𝐷𝐻(𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦!"#$%, 𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦&'&)	

2.3 Extended Triple Diffie-Hellman (X3DH) Protocol
The Signal Protocol takes the Diffie-Hellman Algorithm one step further by repeating the algorithm for
different sets of keys which are stored for different amounts of time, they coined this recipe for secure key-
exchange as the "Extended Triple Diffie-Hellman Algorithm," [12] or "X3DH" for short. In this algorithm,
each user owns several different types of asymmetric key-pairs: identity keys are long term and are usually
generated at install-time, signed ephemeral keys are replaced at a certain interval (for example, every month),
and one-time pre-keys are used once for every iteration of the protocol. These keys, including a set of one-
time pre-keys and a signature of the user’s ephemeral key, are sent to and hosted at a server owned by Signal
(this set of keys is referred to as a “pre-key bundle”) which allows for the application to build shared keys
between users even when one of those users might be offline. Below, Figure 4 shows the series of Diffie-
Hellman key exchanges that are performed in order to generate a shared secret between two users.

	 7	

Figure 4: X3DH Key Exchange Example

Once a shared secret is generated between two users, they may use this shared secret as the initial
cryptographic key for a symmetric encryption scheme in a post-X3DH algorithm, such as the Double Ratchet
algorithm, which will be mentioned later. The implementation of the X3DH algorithm provides mutual
authentication between users and forward secrecy over a public channel when generating the secret key. This
prevents an adversary from impersonating a legitimate user, and if a user’s keypair is compromised, prevents
an adversary from decrypting past secret keys. In addition, both users do not need to be online when this key
exchange is performed – because these keys are held on a server hosted by Signal, one party can generate a
shared secret for a future conversation with another user.

2.4 Double Ratchet Algorithm
Once a shared secret key has been generated between two users, this key can be used to generate further
message encryption keys or can be used itself as a message encryption key. In order to generate these keys
such that all of the previously mentioned security properties can be achieved, the algorithm in which the key
generation and message encryption takes place must be designed specifically to uphold these goals.

Let’s say that we are creating our own hypothetical encryption scheme and take the following security feature
into consideration: forward secrecy. In order for our message encryption algorithm to succeed in providing
this feature, the algorithm must ensure that in the case a user’s encryption key for a specific message is
compromised by an adversary, it would still be considered infeasible for the same adversary to attempt to
compromise any previous message encryption keys, even with the key they currently possess. In order for
our encryption algorithm to accomplish this, each message encryption key must be passed through a sort of
hash function (or something similar) in order to ensure that an adversary cannot feasibly guess previous keys
(as we recall, coming up with the input of a hash function, given the output, is considered infeasible). Adding

	 8	

this primitive into our message encryption scheme disallows adversaries from finding previous encryption
keys (giving us forward secrecy,) but how can we prevent adversaries from calculating future encryption
keys (in other words, having the encryption scheme provide future secrecy?) One solution entails
incorporating a Diffie-Hellman key exchange once a certain amount of messages or time has passed, which
results in the generation of a fresh key iteration. With this, old keys are discarded, a new key is created, and
in the case that an adversary had compromised an encryption key, the creation of a new iteration of keys
prevents an adversary from generating new keys using the old key they possess. Coming back to Signal, in
order to exchange encrypted messages while meeting the previously mentioned security properties, Open
Whisper Systems built an algorithm that does so effectively by ensuring fresh keys are used for every
encrypted message, which they dubbed the "Double Ratchet Algorithm" [11].

In the implementation of the Double Ratchet Algorithm, keys are refreshed, or "ratcheted" in two different
ways: using a symmetric ratchet, and an asymmetric ratchet. Performing these ratchets refreshes the data
used to generate message encryption keys, as well as the actual message encryption keys. These ratchets are
performed using chains of HKDFs, which entail having the input key of the current HKDF chain be the
output material of the previous HKDF execution. There are two of these chains running concurrently which
provide the symmetric keys used to encrypt and decrypt messages.

In the asymmetric ratcheting phase, the HKDF chain known as the "root chain" is constantly refreshing the
HKDF chains which are used to generate the message encryption/decryption keys. The key value which is
used in the initial root chain HKDF execution is the output of a Diffie-Hellman key exchange, using the
keypairs from both users — given an authenticated channel — this output will only be known to the parties
involved in the key exchange. For the initial input value of the root chain HKDF, a shared secret generated
using the X3DH Algorithm is used; however, after the first asymmetric ratchet of the root chain, subsequent
inputs to this HKDF chain will be the output of the previous ratchet. The second of the two HKDF outputs
will be used as the starting input of two new chains, the sending and receiving chains, which will be used for
the symmetric ratchet. When asymmetric ratchets take place, the current symmetric key chains are potentially
discarded (if they aren't still needed for the decryption of in-transit messages) and a new sending/receiving
chain pair are created, introducing freshness and allowing the Double Ratchet algorithm to provide future
secrecy. Figure 5 shown below gives a graphical overview of the asymmetric ratcheting phase.

Figure 5: Asymmetric Ratcheting Phase of the Double Ratchet [11]

	 9	

In the symmetric ratcheting phase, symmetric message encryption/decryption keys are refreshed within the
sending and receiving chains. To ratchet the sending and receiving chains, the first of the two outputs from
the previous HKDF execution for the chain is fed as the input to the a new HKDF execution, while the second
of the two outputs will be used as a key for a new message’s encryption/decryption operation. This use of
HKDFs in this fashion allows the device to discard symmetric keys after they are used to encrypt or decrypt
a message, and in doing so, prevents an adversary from decrypting past messages in the event of a symmetric
key compromise – this is what provides forward secrecy to the Signal Protocol. Putting these two ratcheting
mechanisms together, below in Figure 6 we can see how the root chain and sending/receiving chains may
interact with each other in the event of a conversation between two parties. When a message is sent or
received, a symmetric ratchet is performed to the corresponding chain in order to obtain a fresh key for
message encryption/decryption. Furthermore, when a new Diffie-Hellman ratchet public key is received from
a user, then an asymmetric ratchet is performed in order to replace both of the chain keys.

Figure 6: Symmetric Ratcheting Phase of the Double Ratchet [11]

2.5 Putting Everything Together
What connects the earlier discussed X3DH Algorithm and the Double Ratchet Algorithm is the generation
of an initial shared secret key. This shared secret is the final output of the X3DH Algorithm and is
coincidentally the starting point for the Double Ratchet Algorithm. When a session ends between two users
after a varying amount of time has passed or messages have been sent, a new session may be created again
using these two algorithms in succession.

Now that we have an understanding of how these algorithms work in combination to provide end-to-end
encrypted messaging for Signal’s users, we need to recognize and interpret any changes that might occur
when we translate this protocol to a group messaging context. If you noticed, none of the previously
mentioned algorithms discussed group contexts. In the next section we will discuss how we expect an
application of the Signal Protocol to act and how threat actors might attempt to attack the protocol. Following
this, we will deliberate the impact that group contexts have in all of the security properties and algorithms
that we discussed in this section.

3 Security Model
A security model is exactly what it sounds like: it's a model that attempts to lay out how a system incorporates
different security policies within its scope as a piece of software. In the context of the Signal Protocol, we
identify the scope of the system in question as an application that implements the C/Java Signal library. The

	 10	

Signal source code libraries can be found on GitHub2 , and the official Signal Application, which is hosted
by Open Whisper Systems and can be downloaded on most smartphones (iPhone/Android), as well as on
Windows/Apple/Debian-based Unix operating systems3 . In this chapter we will be modeling how the Signal
Application is implemented by taking a thorough look at its source code, modeling how an adversary might
attack the Signal application, and modeling how the Signal application mitigates the previously defined
attacks.

3.1 System Model
A system model, used frequently in software engineering and architecture, can be utilized to describe how
an application is implemented in pieces and how each of those pieces of the application can work together in
order to successfully complete specific use-cases. These use-cases describe functionalities that the software
needs to accomplish in order to meet the needs of its users. In this context, we can model how the Signal
Application implements the Signal Protocol by identifying use-cases of the application and describing how
the application uses user and system resources to accomplish these tasks. Our goal is not to do a source code
review of the Signal Application - this has already been done and the results have shown that the source code
is professionally written. In our system model, we will map the flow of data used within Signal, such that an
understanding of the application may be developed.

The diagram below shows a "black box" system model of the Signal Application, which represents how the
software works without analyzing the complex internal structure of the application. Another way of looking
at this can be described as looking at the application from the user’s point of view. From the network
perspective, you'll notice several parties involved: Alice, Bob, and the Signal servers - if Alice wishes to send
a message to Bob, the message is fed into the application by Alice, which is then encrypted and sent over the
users network to the Signal servers. These servers hold the encrypted messages while Bob is offline. When
Bob comes online, his device will query the Signal servers, which will then send him Alice's encrypted
message. The application will then decrypt Alice's message, and output the unencrypted data to Bob - note
that at any point during this communication, there is no instance where a party is sending unencrypted
information over the wire. In other words, not even the Signal servers have access to the cryptographic keys
which can decrypt Alice's and Bob's messages — only Alice and Bob own those keys, which can only be
decrypted on their own device — this is how the Signal Application implements end-to-end encryption.

Figure 7: Signal Application Black Box System Model

	
2	https://github.com/signalapp		

3	https://signal.org/download/		

	 11	

As we focus on what happens within each device, we begin developing a “white box” system model of the
Signal Application. Simply put, instead of viewing an application as a box that accepts some input and gives
some output, the internal structure and architecture of the application is recognized and understood. From
this perspective, we see input coming from both Alice and Bob - where Alice’s input is her message to Bob,
and Bob’s input is the end-to-end encrypted message that he sent to Alice. When Alice wishes to send a
message, she records her data in a buffer within the application, and when the command is sent to the
application to relay the data to Bob, the information in the buffer is sent to an encryption schema which
encrypts the data. The encryption schema also takes a secret key as input which is generated simultaneously
using the Double Ratchet Algorithm. When this encryption schema finishes its operation, the output will be
in the form of encrypted data and will be sent out to be decrypted and viewed by Bob. Similarly, when
encrypted data from Bob is sent to Alice's device, the data is sent to a decryption schema along with a
decryption key, and the output is the original and unencrypted message for Alice to view and process.

Figure 8: Signal Application White Box System Model

In addition to devices with the Signal Application installed, we can also clarify the use of the Signal Servers.
These servers are used to store information for each user, as well as their devices. Specifically, each user’s
inbox is stored on these servers, which hold the encrypted messages that are destined for each user. Once a
user comes online, their device pings the server, and the server will return any new encrypted messages that
are destined for them. In addition, the Signal Servers hold pre-key bundles which are used to initiate the
handshake needed to generate a shared secret key between two users, using the X3DH Algorithm. Using this
system model gives us the infrastructure needed to explain most use-cases for the Signal Application. With
this understanding in place, we can observe how an attacker may try to exploit this architecture using an
adversary model.

3.2 Adversary Model
In order to create our adversary model, we need to define how we expect an attacker to approach breaking
any of the security properties that are provided by the Signal Protocol. Although we will be taking a look at
some source code for Signal later, I would like to emphasize that we will not be attacking the code. Instead,
now that we have defined how we expect Signal to work using our system model, we will go about defining
the different roles that an attacker may engage in, and depending on their role, characterize what attacks they
might be able to employ. We will be building our adversary model off of previously built models [8], such
that we divide the roles our attacker may take into three positions. These positions describe the medium to
which a malicious actor may try to break the Signal Protocol. These roles include a malicious device/user,
the malicious network owner, or the malicious Signal server.

	 12	

For the first role that was mentioned, the “malicious device/user,” we are defining two different situations
where attacks are based at the application level. The first situation entails a user who has malicious intent in
their use of the Signal Application, and the second entails a user with no malicious intent in their use of
Signal, however their device itself is compromised. In either of the two situations, the malicious actor is
assumed to have full control over the device. While an attacker has taken this role, they may attempt to break
the confidentiality of the messaging scheme by obtaining encryption/decryption keys from the device’s
memory, impersonate a user/device pair by stealing device identifiers and private keys, or a combination of
the previous two by decrypting, altering, and re-encrypting messages in order to break the message
authentication provided by Signal.

The next role that an attacker may take is the “malicious network user.” Here, we are describing a malicious
actor who has taken control of a piece of the computer network infrastructure which sits between the Signal
Application user and the internet – more specifically, the Signal servers. While in this position, we are
assuming that the attacker has full monitoring capabilities over the network, and the malicious actor may
perform a network packet-capture on the network traffic originating from a target user. In addition to
capturing network traffic, the malicious network user may attempt to perform network-based attacks on a
target user, such as spoofing traffic from a legitimate peer or a Signal server or deploying a man-in-the-
middle host to intercept or alter any incoming/outgoing network traffic.

The last role we are defining that an attacker may take is the “malicious Signal server.” Here, we are
describing a malicious actor that has compromised the servers that hold the inboxes for each user, and the
pre-key bundles of each user/device pair. While in this role, we are assuming that the malicious actor has full
control over these servers and have the potential to drop communications from a specific party and drain a
user’s one-time pre-keys from their pre-key bundle. The impact of dropping communications from a specific
source includes potentially forcing the user to use another form of communication which may not be
encrypted. Additionally, the impact of draining a user’s one-time pre-keys from their pre-key bundle consists
of potentially reducing the strength of future-generated shared secrets between two parties using the X3DH
protocol. Instead of using four Diffie-Hellman operations to obtain a shared secret, only three are used before
the outputs are passed through a HKDF, causing the forward secrecy of the shared secret key to depend solely
on the lifetime of the signed pre-key [12].

Now that we have described the different roles a malicious actor may take to attack Signal, we need to define
the scope of the assessment we will be performing. We will be documenting and analyzing how the Signal
Application implements group messaging by evaluating the chain/key values used during message encryption
and decryption. Since this cannot be done from the perspective of a “malicious network user” or a “malicious
Signal server” attacker, we will reduce the scope of this assessment to that of a “malicious device/user” actor.
In our assessment, we will assume that we may compromise a variety of cryptographic keys at any single
point in time. In other words, we will choose and evaluate the severity of compromising a specific key;
however, we will not be able to steal more than one key.

3.3 Mitigation Model
Now we will describe a mitigation model that is used by the Signal Application to prevent attacks defined as
in-scope within our adversary model. In order to map out how Signal mitigates attacks performed by a
malicious user or a malicious actor who has compromised a legitimate user’s device, we will split mitigations
into two categories: mitigations performed during the initial key exchange (or during an execution of the
X3DH Algorithm), and mitigations performed when a valid session is already in place (during the Double
Ratchet Algorithm execution). In both cases, we will give instances of attacks and mitigations in the case that
a user’s private identity key, signed pre-keys, or one-time pre-keys are compromised, and in the case of the
Double Ratchet Algorithm, we will give attack/mitigation examples where the root, sending or receiving
chain keys, or message keys are compromised.

	 13	

During an execution of the X3DH algorithm, the keys that may be compromised are a user’s identity keys,
signed pre-keys, or their one-time pre-keys. The following security considerations are summarizations of
Marlinspike et. Al [12].

• A user has no cryptographic guarantee that they are exchanging keys with their intended recipient
unless both parties authenticate themselves over an authentic channel.

• If a party doesn’t use one-time pre-keys in their X3DH protocol run, or if a malicious actor drains
another users’ one-time pre-keys, then an initial message that is sent may be replayed and accepted
by the recipient. If this were to occur, this would allow users to reuse their initial keys. To mitigate
this, both parties need to ensure that one-time pre-keys are used during their protocol runs and that
their stock of one-time pre-keys hosted at the Signal server doesn’t run out.

• If a third party has compromised Alice or Bob’s private identity key, then given a transcript of the
initial message that occurred between two parties, the third party could confirm that the
communications occurred between Alice and Bob, breaking the deniability scheme within the
X3DH Algorithm. Additionally, a compromised identity key can result in the complete
impersonation of that party to others. To mitigate this, a user must replace their identity keys if
they suspect them to be compromised.

• Compromised signed pre-keys may also have disastrous effects on the security of older or future
values of the shared secret between two parties.

o If one-time pre-keys are used during the protocol run, and a party’s private identity key
and signed pre-key are compromised, the older secret key value that was generated may
not be compromised as long as the one-time pre-key that was used is deleted.

o If one-time pre-keys are not used during the protocol run, and a party’s private identity
key and signed pre-key are compromised, then so is the older secret key value that was
generated.

o Compromised signed pre-keys may enable future attacks such as passive calculation of
secret key values, and the impersonation of arbitrary other parties.

In any case, to mitigate signed pre-key compromise, a user must replace any keys that
they suspect to be compromised.

	
During a protocol run of the Double Ratchet Algorithm, in addition to private key compromise, other private
resources available to the user may be stolen from an attacker. Here are some examples, et. al Marlinspike
[11]:

• A malicious entity who has compromised a legitimate user device may be able to decrypt
encrypted messages if old plaintexts or keys can be recovered. To mitigate this, it is recommended
that old plaintexts and keys are securely deleted.

• A compromised user device may have their private keys stolen, which can lead to a number of
disastrous situations:

o An attacker could use the compromised private identity keys to make their own new
sessions using new X3DH protocol runs.

o An attacker could substitute their own ratchet keys via an active man-in-the-middle attack
and impersonate the user who owns the compromised device.

o An attacker could modify the random number generator within the device such that future
ratchet keys are predictable.

In any case, if a user suspects that their private keys have been stolen, they should replace them
immediately.

Now that we have defined how we expect the Signal Application to function, how we suspect attackers might
attack Signal in a given scope, and how those attacks might be mitigated, we can move forward in defining
group contexts for the Signal Protocol. In the next section, we will be adding on to our previous definitions
and security properties, discussing previous findings, and describing how we will assess group messaging
within the Signal Application.

	 14	

4 Group Messaging
Taking a step back and looking at unencrypted messaging applications in general, one key feature you might
think of is the ability to send and receive messages in a group setting. Having this capability makes it much
more convenient for more than two people to engage in conversation without miscommunications occurring.
Possessing this function in an unencrypted messaging application can be as easy as repeatedly sending the
same message to several recipients. However, does this seemingly easy implementation of group messaging
have the same conversion to an encrypted messaging protocol? If not, what security properties in our
encrypted messaging protocol are at risk of being violated in the context of group messaging? In this section,
we will be answering these questions by understanding the differences in the security properties associated
with direct and group messaging, summarizing previous findings and discussing their implications. We will
end this section by discussing how we can customize an implementation of the Signal application in such a
way that we may characterize the Signal protocol for group messaging.

4.1 The Implications of Group Messaging

As stated earlier, we know that Signal seeks to bring confidentiality, message authenticity, origin integrity,
and much more to their messaging application. In order to understand how group messaging differs from
direct messaging, we are first going to define additional security properties that are sought when describing
an encrypted group messaging protocol. After this, we will describe some of the difficulties that are
encountered while creating an encrypted group messaging protocol. We will be defining each new group
messaging property by the descriptions provided by Unger et al. [6], as well as Schliep and Hopper [10].

• Computational Equality ensures that all chat participants share an equal computational load.
• Trust Equality guarantees that no participant is more trusted or takes on more responsibility than

any other.
• Subgroup Messaging means that messages can be sent to a subset of participants without forming

a new conversation.
• Contractible Membership ensures that after the conversation begins, participants can leave the

group without having to start a new protocol run.
• Expandable Membership, similar to contractible membership, ensures that members can join the

group without having to start a new protocol run.

The above-mentioned properties are important to encrypted group messaging protocols as they create a
guideline for controls over group session management. These controls not only have to do with security, but
with computational cost as well. For example, trust equality is a sought after so that there is no single target
in which a compromise might have an avalanching affect to other users. Computational complexity comes
into concern when groups grow in size, which is why many of the above properties of group messaging have
to do with performing actions without having to start a new conversation, or perform a new protocol run.

Well if we wish to implement encrypted group messaging, why can’t we just use a multi-party key
distribution protocol, similar to X3DH, in order to generate an initial shared secret for everyone in the group?
Keep in mind that each group member needs to contribute to the generation of a new group key. Thus the
addition of more members into a group key distribution protocol consequentially increases the complexity of
the computation needed to generate a key. In addition, we mention later that previous work [1] has shown
that having a group key used within a Double Ratchet protocol run will deprive the session of its ability to
provide future secrecy, as the chain keys are not asymmetrically ratcheted unless the group undergoes a major
edit.

An older blog post made by Moxie Marlinspike after group messaging was released in 20144 describes how
TextSecureV2 (the predecessor to Signal) battled group message security, however this blog post did not

	
4	https://signal.org/blog/private-groups/		

	 15	

describe in depth how the application solved these problems. Since then, no documentation has been released
from Signal regarding the implementation of the group protocol, and no documentation regarding the group
protocol has been released by anyone with as much clarity as the other algorithms used in Signal such as
X3DH [12] or the Double Ratchet Algorithm [11].

4.2 Previous Findings and their Implications
Previous work from [1] has stated that the utilization of the Double Ratchet algorithm within Signal's Java
implementation is dubbed as the "Senders Keys" variant of the Signal Protocol, as opposed to the “Pairwise”
form. The “Sender Keys” variant of the protocol is also known as "server-side fan out," and entails the sender
of a message delivering the encrypted message to the Signal server, where it will copy the message and send
it to each participant in the group message. Although this method reduces the complexity of the sending
operation on the sending users' side, in the case of an adversary discovering a users' sending key, the
adversary could potentially eavesdrop on all future messages and impersonate the target user. As stated in
[1], this is due to the key chains only being rotated (via an asymmetric ratchet) when the group is edited in
some way (a user leaves the group, the group’s name is changed, etc.). Hence, the "Senders Keys" variant of
the Signal Protocol does not provide future secrecy. The “Senders Keys” and “Pairwise” variants of Signal’s
Java implementation, otherwise known as the “server-side fan out” and “client-side fan out” respectively, is
detailed below in figure 9.

Senders Keys / Server-Side Fan Out Pairwise / Client-Side Fan Out

Figure 9: “Senders Keys” and “Pairwise” Variants of Group Messaging

However, in a previous analysis done on the Signal Protocol and its group messaging implementation [8], it
was stated that the Signal Application applies "client-side fan out," which entails creating a pairwise
conversation with each other user in a group message. This described method, although more complex than
the "Senders Keys" variant and requiring more work done by each individual user, provides future secrecy
in its implementation. The analysis performed by Rosler et al. also mentions using the Java implementation
of the Signal Protocol, although, the authors also describe how they were able to break this implementation
by describing two proof-of-concept attacks that may be performed: burgling into a group, and forging
acknowledgements. In this case, the act of adding yourself back into a group, even after you have been kicked
out, can compromise the security of all encrypted messages sent in the future, hence breaking future secrecy.

The two previously described works have brought forward the notion that the Signal Protocol cannot
guarantee future secrecy; nevertheless the reasons behind each seem to contradict each other as one declares
that the Java implementation of the Signal Protocol entails server-side fan out, while the other asserts that
pairwise encrypted messages all originate from the sender. Conflicting viewpoints, in addition to the lack of
documentation regarding the implementation of X3DH and the Double Ratchet algorithm in a group setting,
brings up the following question: How is Signal's group messaging protocol actually implemented?

	 16	

In order to find out exactly how Signal's group messaging protocol is implemented, we will be disassembling
a command-line tool used to implement the Signal Protocol’s Java library in such a way that users can send
and receive messages from their command line prompt. After extracting the Java classes associated with this
tool, the uncompiled code will be altered in order to track the path of execution during the messaging process.
By doing this, we will be able to identify possible differences in the path of execution between direct and
group messaging. In the next section, we will discuss the thoughts and design behind this customized tool
and consider how our results can characterize Signal’s group protocol.

5 Assessing the Group Messaging Protocol
In this section, we will discuss Signal’s Java Implementation, and the different applications that use it. Next,
we will describe in detail how it’s possible to edit these applications in order to obtain verbose information
regarding the implementation of direct and group messaging, so that we may map out the execution of the
Double Ratchet Algorithm. After obtaining our results, we will use this information to summarize how group
messaging works compared to direct messaging, and how that may affect the security properties that are
sought after for encrypted messaging protocols.

Previous analyses of Signal’s group messaging capabilities detail attacks against the protocol, comparing
Signal to other messaging applications, and even analyzing the cryptographic algorithms used in the protocol
[5]. However, our analysis will differ by examining the behavior of Signal under group messaging contexts.
This analysis will not examine vulnerabilities in the group session management employed by Signal, nor will
it focus on the cryptography of the underlying protocols. Instead we will focus on documenting the behavior
of Signal under group messaging contexts by altering the code base of libsignal-protocol-java to log specific
function calls. By doing this for direct and group messaging, we will have a first-hand glance at how the path
of execution differs between these two modes of operation. The question we are asking is “How does Signal
implement group messaging, and how does it differ from direct messaging?”

5.1 Senders Keys vs. Pairwise Keys Message Distribution
Before diving into Signal’s code base, we will briefly discuss the differences in asymptotic complexity
between the previously defined Sender Keys and Pairwise Keys variants of group messaging.

Figure 10: Asymptotic differences between Sender Keys and Pairwise Keys variants [1]

As shown in the figure above, each group messaging variant has benefits over the other in some capacity.
The Sender Keys variant provides increased efficiency in the post-setup phase with decreased number of
exponentiations and symmetric encryptions, as well as less bandwidth usage. Although the Sender Keys
variant seems to be more efficient, it does not provide Post-Compromise Secrecy (PCS), otherwise known as

	 17	

future secrecy, which is provided in direct messaging, and in turn provided by the Pairwise Keys variant of
Signal group messaging.

There appear to be pros and cons to both variants of group messaging, however with respect to the additional
level of security provided by future secrecy, implementing the Pairwise Keys variant of Signal group
messaging would ensure that future messages can’t be decrypted (to some degree) after a key compromise.

5.2 The Java Signal Protocol Library (libsignal-protocol-java)
The Signal Protocol has been implemented in several languages, each of which are placed into libraries that
can be found on the signalapp project page of GitHub5. Specifically, we will be looking at Signal’s Java
implementation, which we will refer to as libsignal-protocol-java6. This library is used to communicate with
Signal’s messaging service and is used in the implementation of Signal’s official Android application. To
use this library to communicate with the Signal servers, a client must generate keypairs and register
themselves as a user of Signal before being able to send and receive both text and media messages

Within this library, there are several directories and standalone Java files that are used to implement the
protocol. We will not be going through all of these as they are not all relevant to the topic at hand, and instead
we will focus on the files which relate to direct/group message encryption and decryption:

• Libsignal/groups/
o Ratchet/SenderChainKey.java
o Ratchet/SenderMessageKey.java
o State/SenderKeyRecord.java
o State/SenderKeyState.java
o State/SenderKeyStore.java
o GroupCipher.java
o GroupSessionBuilder.java
o SenderKeyName.java

• Libsignal/ratchet/
o ChainKey.java
o MessageKeys.java
o RootKey.java

• Libsignal/state/
o SessionRecord.java
o SessionState.java
o SessionStore.java

• Libsignal/SessionCipher.java

At first glance, we notice that several files within the group directory are similar to those seen throughout the
rest of the code base (GroupCipher.java is similar to SessionCipher.java, there are ChainKey and
MessageKey files for both direct and group messaging, etc.). This appears to be re-implementations for
specific functions such that they will work under a group context.

We have acknowledged the existence of a group messaging directory within the libsignal-protocol-java code
base and we know there exists separate constructors and methods that specifically align with group
messaging. From this information, we may form our hypothesis. If we send/receive group messages using
our customized Signal application, then the application will execute function calls within the group
messaging directory from within libsignal-protocol-java and will describe how group messaging is

	
5	https://github.com/signalapp	

6	https://github.com/signalapp/libsignal-protocol-java	

	 18	

performed within Signal. We will use direct messaging as a baseline and observe what differences take place
in order to send and receive group messages.

5.3 signal-cli
In addition to the official Signal Application, there are also programs which aren’t official Signal applications
but still employ the same Signal libraries and interact with the Signal servers such that all the same features
of the official application are available on the unofficial one. An example of an unofficial Signal application
includes the signal-cli tool, hosted by AsamK on Github7. We will be using this tool to assess the group
messaging functionalities of Signal by altering the libsignal-protocol-java library hosted within the
application. We weren’t able to get any official version of the Signal Application under a debugger; this may
be the subject of future work.

The signal-cli tool serves as a command-line interface for the libsignal-protocol-java library, and provides
support for key generation, verification, as well as sending/receiving messages via the Signal servers.
Focusing on the sending/receiving features of the application, signal-cli allows us to send and receive
messages from a group, on the condition that the client provides a unique group identifier. Moving forward,
we will discuss how we will alter the Signal library that is being used in order to get the information we need
to further understand group messaging.

5.4 Modifying signal-cli
The following steps will describe how we will edit the libsignal-protocol-java library held within the signal-
cli tool.

1. Clone the libsignal-protocol-java and signal-cli repositories from GitHub.
2. Decompress the libsignal-protocol-java library located within the signal-cli source code. In order

to not confuse these two libraries, we will refer to the library located within the signal-cli
repository as libsignal-protocol-javaCLI, and the other as libsignal-protocol-javaSRC. This
decompression operation will result in the creation of a new directory containing subdirectories of
.class files. These .class files are the compiled, but uncompressed .java source code files that make
the Signal Protocol.

3. Locate and edit the file you wish to alter within the libsignal-protocol-javaSRC library, and copy it
into the top directory within the libsignal-protocol-javaCLI archive. Compile the altered .java file,
converting it into a .class file, and replace it with its respective .class file in the libsignal-protocol-
javaCLI archive directory.

4. Finally, recompile the libsignal-protocol-javaCLI directory, converting it back into a Java archive
(with a .jar file extention). Copy this Java archive to where it was originally located within the
signal-cli repository.

After following these steps, running the signal-cli binary will in-turn run the Java source code that you edited
when verifying yourself to the Signal server, as well as when sending and receiving both direct and group
messages. While considering the best method of mapping out the protocol while including as much
information as possible, we found that including all HKDF output information for each sent and received
message would give us an appropriate mapping of the Double Ratchet execution. In order to accomplish this,
we need to print the root key, sending/receiving chain key, message key, and padded plaintext message for
each direct and group message that is sent and received. Within the Java source code of the libsignal-
protocol-java library, there are the following functions that we will print information from in order to make
this happen:

• org/whispersystems/libsignal/SessionCipher.java
o CiphertextMessage encrypt(byte[] paddedMessage)
o byte[] decrypt(SignalMessage ciphertext, DecryptionCallback callback)

	
7	https://github.com/AsamK/signal-cli	

	 19	

• org/whispersystems/libsignal/groups/GroupCipher.java
o byte[] encrypt(byte[] paddedMessage)
o byte[] decrypt(SignalMessage ciphertext, DecryptionCallback callback)

Within the groups and ratchet sub-directories in the libsignal-protocol-java library, there are plenty more
files and methods that provide us with valuable information, however we will be focusing on these two
“encrypt” and “decrypt” methods in particular. Both of these encryption methods take a padded plaintext
message as an input. The direct-message encryption method returns a CiphertextMessage-type object which
contains Signal Protocol information and the actual serialized ciphertext, while the group-messaging
encryption method only returns the ciphertext as a byte array. Similarly, with the decryption methods, both
provide a byte array of ciphertext as an input and a plaintext byte string as an output. For each of these, we
are able to add code which prints out a variety of information that is available within the method, which
includes the following:

• Which method was called (direct/group encryption/decryption)
• Root chain key
• Sending/Receiving chain key
• Message key
• The encrypted/decrypted plaintext message

5.5 Running the Altered signal-cli
First, we want to see how direct messaging is mapped in our Double Ratchet execution. As a hypothesis, we
expect the signal-cli application to hit the direct message encryption/decryption methods when sending and
receiving messages. From the figure below, we can see two messages being sent from our command prompt
to the same user. By doing this, we can see that the root key is the same, while all the other keys are different.
This would make sense as the root key can stay the same while progressing the sending key chain in our
ratchet.

Figure 11: Direct Messaging Using Altered signal-cli #1

After waiting a short amount of time (approximately 20 minutes), we repeated this operation, this time only
sending one message. Note that each key, including the root chain key, the sending chain key, and the
message key, are all different. This implies that between the two users, an asymmetric ratchet took place,
replacing the root chain key and the other underlying chain keys as well.

	 20	

Figure 12: Direct Messaging Using Altered signal-cli #2

Now that we’ve seen the behavior of direct messaging, we may begin observing how group messaging
operates. We expect that the signal-cli application will use the GroupCipher methods, as well as others within
the groups directory in libsignal-protocol-java. In order to begin group messaging within the signal-cli
application, we will first create a group and send an initial group message using the mobile application (in
this case, the iOS Signal Application was used). Then, we will obtain the group-ID by receiving a message
within the signal-cli application and use that group-ID as an argument to send group messages. We show
how this is done in the figures below.

Figure 13: Receiving the initial group message, including the group-ID

Figure 14: Sending a group message using the group-ID

As you see from the above figures, it appears that the group messages are being sent using the direct
messaging methods. Although print statements were entered in every method of the groups directory, sending
and receiving messages using the group identifiers always results in direct message encryption and decryption
methods. Even after sending consecutive group messages with either a small or large amount of time between
each message resulted in either none or multiple asymmetric ratchets, respectively, similar to direct
messaging.

	 21	

This concludes our experiment. Now, we will use the above-mentioned data that we have collected to
characterize and comment on Signal’s group messaging algorithm.

5.6 Examining Our Results
In summary, we can summarize our results by the following:

• The act of sending and receiving messages destined for a single host will execute the methods
associated with the encryption and decryption of messages meant for one destination.

• Sending messages to the same destination host, one after the other in a quick fashion, resulted in
two symmetric ratchets and no asymmetric ratchet. Sending two direct messages with several
minutes in between each message resulted in two symmetric ratchets and an asymmetric ratchet.
It is unknown if the number of messages or the time difference between the messages caused the
asymmetric ratchet.

• The act of sending and receiving messages destined for multiple hosts will execute the methods
associated with the encryption and decryption of messages meant for one destination. In all, the
sending and receiving of messages tagged with a unique group-ID resulted in no methods from
the groups directory within the libsignal-protocol-java library to be called.

• As with direct messaging, sending several group messages with little time between each message
resulted in no asymmetric ratchet, while sending them over a large amount of time resulted in at
least one asymmetric ratchet.

After reviewing these results, we arrived at the conclusion that each user in a group being tied to a unique
group-ID, and aside from that, using the direct messaging protocol to communicate with each host. Having
a group protocol that relies heavily on underlying direct message communication such as this meets all of the
group messaging security properties that were discussed earlier.

The first property, computational equality, includes having each group participant share computational load.
This is true as each member of the group decrypts the same message that is received by the group, no member
needs to compute more than another to decrypt the same message. The next property, trust equality, ensures
that no participant takes on more responsibility than another. This is also true, as each member assumes the
role of an administrator of the group – there exists no group member who is not allowed to add another group
member or edit the group description. Subgroup messaging allows users to send a message to a subset of
participants without forming a new conversation, which is possible since Signal relies on direct messaging
and would only constitute leaving a member out of the recipients list of the group. Lastly, we have
contractible and expandable membership, allowing group members to leave or join (respectively) the group
without having to start a new protocol run. Simply leaving or joining the group and sending an update query
to the remaining members of the group after the operation is complete allows these properties to be met.

In addition to these group messaging properties being met, we may assume that the original direct messaging
security properties are met as well, as the direct messaging protocol remains unchanged through the group
messaging algorithm. In essence, our results show that the signal-cli implementation of the Signal Protocol,
which uses the libsignal-protocol-java library from Open Whisper Systems, upholds both the direct and
group security properties that are sought after by end-to-end encrypted messaging applications. If we recall,
our hypothesis entailed exploring Signal’s group messaging implementation by observing the flow of
execution from within the files in the group subdirectory. Although our hypothesis was not initially met due
to direct messaging functions being called instead of group messaging functions, we were still able to observe
Signal under a group context and document the behavior of the application.

	 22	

6 Conclusion
Through discussing the design and implementation of cryptographic primitives, using them to build the
Signal Protocol, and modeling the environment to which applications that use the Signal Protocol operate, a
firm understanding may be built regarding how the Signal Protocol operates in a direct-message setting.
Initially, we argued that Signal’s documentation around group messaging is lackluster, which is concerning
as it is important to understand to ensure the security properties of the protocol are upheld. Through tests
which included command-line interfaces to Signal’s Java implementation of the protocol, we communicated
in a direct and group setting to multiple devices and compared the keys which were used to move forward in
the ratchet, as well as to encrypt and decrypt messages. By doing so, we found that the protocol for group
messaging rests upon several executions of the direct messaging algorithm. Future work includes replicating
this experiment over numerous implementations of the Signal Application, such as over official desktop and
mobile applications.

	 23	

REFERENCES
[1] Patricia S. Abril and Robert Plant. 2007. The patent holder's dilemma: Buy, sell, or troll? Commun. ACM

50, 1 (Jan. 2007), 36-44. DOI: https://doi.org/10.1145/1188913.1188915
[2] Sarah Cohen, Werner Nutt, and Yehoshua Sagic. 2007. Deciding equivalences among conjunctive

aggregate queries. J. ACM 54, 2, Article 5 (April 2007), 50 pages. DOI:
https://doi.org/10.1145/1219092.1219093.

[3] David Kosiur. 2001. Understanding Policy-Based Networking (2nd. ed.). Wiley, New York, NY.
[4] Sten Andler. 1979. Predicate path expressions. In Proceedings of the 6th. ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages (POPL '79). ACM Press, New York, NY, 226-
236. DOI: https://doi.org/10.1145/567752.567774.

[5] Patricia S. Abril and Robert Plant. 2007. The patent holder's dilemma: Buy, sell, or troll? Commun. ACM
50, 1 (Jan. 2007), 36-44. DOI: https://doi.org/10.1145/1188913.1188915

[6] Sarah Cohen, Werner Nutt, and Yehoshua Sagic. 2007. Deciding equivalences among conjunctive
aggregate queries. J. ACM 54, 2, Article 5 (April 2007), 50 pages. DOI:
https://doi.org/10.1145/1219092.1219093.

[7] David Kosiur. 2001. Understanding Policy-Based Networking (2nd. ed.). Wiley, New York, NY.
[8] Sten Andler. 1979. Predicate path expressions. In Proceedings of the 6th. ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages (POPL '79). ACM Press, New York, NY, 226-
236. DOI: https://doi.org/10.1145/567752.567774.

[9] Patricia S. Abril and Robert Plant. 2007. The patent holder's dilemma: Buy, sell, or troll? Commun. ACM
50, 1 (Jan. 2007), 36-44. DOI: https://doi.org/10.1145/1188913.1188915

[10] Sarah Cohen, Werner Nutt, and Yehoshua Sagic. 2007. Deciding equivalences among conjunctive
aggregate queries. J. ACM 54, 2, Article 5 (April 2007), 50 pages. DOI:
https://doi.org/10.1145/1219092.1219093.

[11] David Kosiur. 2001. Understanding Policy-Based Networking (2nd. ed.). Wiley, New York, NY.
[12] Sten Andler. 1979. Predicate path expressions. In Proceedings of the 6th. ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages (POPL '79). ACM Press, New York, NY, 226-
236. DOI: https://doi.org/10.1145/567752.567774.

	

