NCCQroup”

Security Assessment - opaque-ke

WhatsApp LLC
December 10, 2021 - Version 1.3

Prepared for
Kevin Lewi
Lindsay Hegy

Prepared by
Ava Howell
Kevin Henry

©2021 - NCC Group

Prepared by NCC Group Security Services, Inc. for WhatsApp LLC. Portions of this document and the
templates used in its production are the property of NCC Group and cannot be copied (in full or in part)
without NCC Group's permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and
the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of
the information contained herein. Use of NCC Group's services does not guarantee the security of a
system, or that computer intrusions will not occur.

Executive Summary ﬂCCQ(OUpe

Synopsis

In June 2021, WhatsApp engaged NCC Group to conduct a security assessment of the opaque-ke library, an open
source Rust implementation of the OPAQUE password authenticated key exchange protocol. The protocol is designed
to allow password-based authentication in such a way that a server does not actually learn the plaintext value of
the client’s password, only a blinded version of the password computed using a verifiable oblivious pseudorandom
function.

Two consultants spent a total of 15 days over 2 weeks focused on a detailed review of the opaque—ke source code
and the associated version of the OPAQUE specification. The library is open source, with code available in GitHub, and
the specification is available as an IETF draft RFC. The WhatsApp team provided support throughout the engagement,
and the NCC Group project team achieved good coverage of the provided source code and the associated draft of the
OPAQUE specification.

Scope

The primary target is opaque-ke, an open source Rust library intended to be a reference implementation of OPAQUE.
The review focused on the tagged release v@.5.0 located at: github.com/novifinancial/opaque-ke/tree/v@.5.0. The
reviewed library implements Draft 83 of the OPAQUE RFC: www.ietf.org/archive/id/draft-irtf-cfrg-opaque-03.html. A
formal review of the OPAQUE specification was not in scope, but compliance to the specification was assessed, and
some comments on the RFC itself are included where relevant.

Following the initial review, a re-test was conducted across two updated releases..

* Releasev1.2.0, located at github.com/novifinancial/opaque-ke/tree/v1.2.9, is a direct update tov@.5.0 and targets
the same version of the OPAQUE RFC. This release contains several patches that directly address findings in this
report, and was the primary target of the re-test.

* Release v@.6.0, located at github.com/novifinancial/opaque-ke/tree/v0.6.9, targets a newer version of the OPAQUE
RFC (Draft ©5), and was still under development at the time of the initial review. Fixes for some findings identified in
this report were already present in this release, and are summarized alongside the relevant findings.

Limitations

During the review, the WhatsApp team was actively working on the v@.6.0 release of opaque-ke, targeting a newer
version of OPAQUE. Some of the findings identified in this report had been identified previously, and have been
corrected in either the RFC itself and/or in patches to the opaque-ke library. While these patches were reviewed in
isolation where applicable, an in-depth review of opaque-ke v@.6.0 or newer versions of the RFC was not in scope.

Key Findings
The assessment uncovered several issues, which were promptly addressed by the WhatsApp team:

+ Insufficient Input Validation During OPRF Group Element Deserialization: Incoming messages containing a
group element were not checked for the identity element. Deserializing an identity point could have caused all
subsequent point operations to ‘zero out’ which may have forced the export_key to a known value.

* Server Can Reflect OPRF Value And Force Non-Randomized Password: A malicious server could have forced the
client's randomized password to a non-randomized password value, potentially leading to additional unexpected
exposure of the client's password such as through usage of the export key.

* Missing Error Condition in I20SP Implementation: A missing length check when serializing variable-length data
may have caused the length prefix to be set incorrectly, preventing correct deserialization of the resulting data at
the endpoint.

* Non-Constant-Time Verification of 3DH Transcript MAC: An attacker that can precisely measure the timing of
the OPAQUE implementation’s verification of the transcript hash of the 3DH key exchange may have been able to
authenticate a false 3DH transcript.

N

| WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://github.com/novifinancial/opaque-ke/tree/v0.5.0
https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-03.html
https://github.com/novifinancial/opaque-ke/tree/v1.2.0
https://github.com/novifinancial/opaque-ke/tree/v0.6.0
https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-05.html

nccoroup”

Strategic Recommendations

* The library could benefit from more comprehensive testing in general. Several tests are implemented with known
test vectors and to validate basic behavior, but more robust tests that explicitly validate requirements and negative
test cases would be beneficial. Fuzz testing or randomized input testing may help identify potential serialization
errors, and could potentially detect missing error conditions and edge cases.

+ Additional guidance to a user of the library may be beneficial, particularly in instances where the client or server
may need to implement OPAQUE-specific requirements not included in the library itself. For example, a server may
mitigate client enumeration during the registration phase by limiting the rate at which a client can initiate the process.

* While this report was under preparation, opaque-ke v@.6.0 was released, which updates the library to implement
Draft @5 of the OPAQUE RFC, including several security-related patches, some of which address issues identified in
this report. A formal review of this recent release may reveal additional findings not present in vo.5.@.

Additional Content
In addition to a set of formal findings, this report includes several appendices:

* arequirements summary and review;

+ an overview of client enumeration attack mitigations;

* a summary of security-related patches in opaque-ke v0.6.0;
* a summary of security-related patches in opaque-ke v1.2.0;
¢ comments on the OPAQUE RFC.

3 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

Table of Findings

nccoroup”

For each finding, NCC Group uses a composite risk score that takes into account the severity of the risk, application’s
exposure and user population, technical difficulty of exploitation, and other factors. For an explanation of NCC Group's

risk rating and finding categorization, see Appendix A on page 21.

Title Status ID Risk
Insufficient Input Validation During OPRF Group Element Deserialization Fixed 004 High
Server Can Reflect OPRF Value And Force Non-Randomized Password Fixed 019 High
Potential Constraint Violation in Public-Private Key Pairs Fixed 002 Low
Non-Constant-Time Verification of 3DH Transcript MAC Fixed 006 Low
Potentially Unsafe Type Conversion of usize Fixed 007 Low
Missing Error Condition in I20SP Implementation Fixed 008 Low
Outdated and Unmaintained Dependencies Fixed 001 Informational
OPRF Blinding Scalar Can Be Chosen At Random To Be The Zero Element In Fixed 005 Informational

GF(p)

4 | WhatsApp LLC Security Assessment - opaque-ke

NCC Group

Finding Details nccgroup”

Finding
Risk
Identifier
Status
Category
Component
Location

Impact

Description

Insufficient Input Validation During OPRF Group Element Deserialization
High Impact: High, Exploitability: Medium

NCC-E001000K-004

Fixed

Cryptography

opaque-ke

novifinancial/opaque-ke/blob/master/src/messages.rs

Deserializing an identity point could have caused all subsequent point operations to ‘zero out’
which may have forced the export_key to a known value.

The VOPRF' specification defines the RandomScalar () function as returning a randomly cho-
sen non-zero element in GF(p). If a zero were to be chosen, then subsequent scalar-by-point
multiplications inB1ind(), Evaluate() andUnblind() (which is essentially the entire VOPRF
flow) would result in the predictable neutral element. As the specification does not consider
trust boundaries, the effects of a chosen zero scalar are not articulated as part of the OPRF
group element deserialization process.

Given that OPAQUE messages cross trust boundaries, itisimperative to validate received input
and reject the neutral point. For example, the OPAQUE? specification describes the following
registration message types containing serialized group elements that cross trust boundaries.

struct {
SerializedElement data;
} RegistrationRequest;

data A serialized OPRF group element.
struct {

SerializedElement data;

opaque server_public_key[Npk];

} RegistrationResponse;

data A serialized OPRF group element.

The code in messages.rs contains a number of messages and associated deserialization func-
tions that do not test for the neutral point. An example for the RegistrationRequest is
shown below. The from_element_slice() function on the highlighted line does not (inter-
nally) check for the neutral point. As such, the neutral point will be deserialized and returned
to the calling function.

impl<CS: CipherSuite> RegistrationRequest<CS> {

/// Deserialization from bytes
pub fn deserialize(input: &[u8]) -> Result<Self, ProtocolError> ({
let elem_len = <CS::CGroup as Group>::ElemLen::to_usize();
let checked_slice = check_slice_size(&input, elem_len,
-» "first_message_bytes")?;
// Check that the message is actually containing an element of the

"https://datatracker.ietf.org/doc/ntml/draft-irtf-cfrg-voprf-@6#section-2.1
Zhttps://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-@3#section-3.2

5 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://github.com/novifinancial/opaque-ke/blob/ba8e940e08a630c0d075e730623ebf0b30d4b9e2/src/messages.rs#L45
https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/messages.rs#L39
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-06#section-2.1
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-03#section-3.2

nccoroup”

// correct subgroup

let arr = GenericArray::from_slice(checked_slice);
let alpha = CS::Group::from_element_slice(arr)?;
Ok(Self { alpha })

In the OPAQUIE flow, the received registration request is provided to the CreateRegistratio
nResponse () function? This function calls the OPRF Evaluate() function* which multiplies
the received group element by the server’s private key (scalar). The result will always be the
neutral point. This same flow exists in other messages and may ultimately reach the export
_key.

Reproduction Steps In opaque-ke/src/serialization/tests.rs, modify the random_ristretto_point() function im-
plementation, as shown below. Note the highlighted line introduces a single comment which
results in all returned points being the neutral point. After modification, all tests continue to

pass.

39 | fn random_ristretto_point() -> RistrettoPoint {
40 let mut rng = OsRng;

1 let mut random_bits = [Qu8; 64];

2 rng.fill_bytes(&mut random_bits);

43

a4 // This is because RistrettoPoint is on an obsolete sha2 version
45 let mut bits = [0Qu8; 64];

46 let mut hasher = sha2::Sha512::new();

47 hasher .update(&random_bits[..]);

48 //bits.copy_from_slice(&hasher. finalize());
49

B RistrettoPoint: : from_uniform_bytes(&bits)

51 }

Recommendation Validate that the deserialized group element in all received messages is not the neutral point.

Retest Results A commit was added to address this issue which verifies that all group elements are not the
identity element on deserialization, and that all scalars are non-zero when created: https://gi
thub.com/novifinancial/opaque-ke/commit/a69ad9473aa046c03854ce23534dbfaac24ea2c

This effectively fixes this issue inv1.2.0.

Client Response Issue was fixed. Ensured that upon deserialization, any of the messages (RegistrationReq
uest, RegistrationResponse, CredentialRequest, CredentialResponse) will be rejected
if the identity element is detected. Also added tests for serialization/tests.rs to ensure that this
is the case. Also ensured that scalars output by the library (both client and server) are always
non-zero.

3https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-@5#section-5.1.1.2
4https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-@6#section-3.4.1.1

6 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/serialization/tests.rs
https://github.com/novifinancial/opaque-ke/commit/a69ad9473aa046c03854ce23534dbfaac24ea2c1
https://github.com/novifinancial/opaque-ke/commit/a69ad9473aa046c03854ce23534dbfaac24ea2c1
https://github.com/novifinancial/opaque-ke/tree/v1.2.0
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-05#section-5.1.1.2
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-06#section-3.4.1.1

nccoroup”

Finding Server Can Reflect OPRF Value And Force Non-Randomized Password
Risk High Impact: High, Exploitability: Medium
Identifier NCC-E001000K-010
Status Fixed
Category Cryptography
Component opaque-ke

Impact A malicious server could have forced the client's randomized password to a non-randomized
password value, potentially leading to additional unexpected exposure of the client's pass-
word such as through usage of the export key.

Description The OPAQUE protocol uses an oblivious pseudo-random function, OPRF, to allow the client and
server to cooperatively compute the output of a pseudo-random function (PRF). This OPRF,
specified in an IETF draft,> provides key security properties for the OPAQUE protocol. Per the
OPAQUE draft RFC, the OPRF provides the following critical functionality:

x Oblivious Pseudorandom Function (OPRF, [I-D.irtf-cfrg-voprf],
version -06):

nn

- Blind(x): Convert input "x" into an element of the OPRF group,

non

randomize it by some scalar "r", producing "M", and output
(Hrll, "M").

- Evaluate(k, M): Evaluate input element "M" using private key
"k", yielding output element "Z".

- Finalize(x, r, Z): Finalize the OPRF evaluation using input

nn non

x", random scalar "r", and evaluation output "Z", yielding

nen

output "y".

The instantiation of the OPRF in OPAQUE is through a prime-order group, Ristretto. Written
multiplicatively:

* the Blind step takes m; = password’,
* Evaluate takes my = m’f = passwordr*k,

1/r

« andFinalize takes mz = my’" = password®.

In OPAQUE, the client performs the Blind step during CreateRegistrationRequest (for
registration) and CreateCredentialRequest (for login), the server performs the Evaluat
e step during CreateRegistrationResponse and CreateCredentialResponse, and the
client performs the Finalize step during the ClientFinalize part of OPAQUE. The input
to Blind is given as H' (password), where H' is a hashing function that uniformly maps
password strings to OPRF group elements under the random oracle assumption. During
finalization, subsequent keys are derived from the output of Finalize by keying HKDF with
the output of a slow hash keyed with the finalized value:

y = Finalize(password, blind, response.data)

envelope_nonce = random(32)

prk = HKDF-Extract(envelope_nonce, Harden(y, params))

Create SecretCredentials secret_creds with creds.client_private_key

B W N -

Shttps://datatracker.ietf.org/doc/draft-irtf-cfrg-voprf/

7 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://datatracker.ietf.org/doc/draft-irtf-cfrg-voprf/

nccoroup”

5. Create CleartextCredentials cleartext_creds with response.server_public_key
and custom identifiers creds.client_identity and creds.server_identity if
mode is custom_identifier

6. pseudorandom_pad =

HKDF-Expand(prk, "Pad", len(secret_creds))

7. auth_key = HKDF-Expand(prk, "AuthKey", Nh)

8. export_key = HKDF-Expand(prk, "ExportKey", Nh)

As such, an attacker who knows the output y of Finalize can compute the auth_key, export
_key, and any other derived keys.

In the current design of the specification and the implementation of opaque-ke, the following
active attack is possible (during registration or login):

1. The client sends its blinded password, in the traditional manner, by mapping the password
to a group element and randomizing it with the scalarr.

2. The server receives the blinded value. Instead of randomizing the blinded password, it
reflects the same group element sent by the client, H' (password)".

3. The client computes y = Finalize(password, blind, response.data), computing y =
ZV" = H'(password)™'/" = H'(password). The randomized password has effectively
been de-randomized. The client then generates keys from the prk instantiated with the
de-randomized password.

4. Later, if any authentication tags or ciphertexts based on those keys are exposed, an at-
tacker can mount a brute-force attack against the user’s password by repeatedly creating
trial prk candidates. Note that this requires access to the nominally public envelope_n
once, and is limited by the speed of the Harden slow-hash function. If the export_key,
auth_key, or any other keys derived from the prk are directly exposed, brute-force attacks
are possible even without envelope_nonce.

In practice, the exposure of ciphertexts and tags based on export_key or export_key itself
may be more likely, given that its recommended usage is broad:

6.4. Export Key Usage

The export key can be used (separately from the OPAQUE protocol) to
provide confidentiality and integrity to other data which only the
client should be able to process. For instance, if the server is
expected to maintain any client-side secrets which require a password
to access, then this export key can be used to encrypt these secrets
so that they remain hidden from the server.

This property is inherent to the design of OPAQUE itself, not the opaque-ke implementation.
The attack described is a specific case of the attack wherein a server generates an insecure
OPRF key, in this case they have effectively chosen their OPRF key to be the identity element
of the group by reflecting the client’s blinded value. One could also imagine a malicious
server which generates a non-identity low entropy OPRF key, or later leaks their OPRF key
to the world, and a similar situation would result where exposure of the export_key or data
encrypted or authenticated by any derived keys leads to additional exposure of the user's
password.

Recommendation Clients should reject the server’s output of Evaluate if it reflects the client's Blind output,
halting the protocol with an error if reflection is detected.

Retest Results A commit was added that updates the information stored by the client such that a (constant

8 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

nccoroup”

time) check for a reflected value can be performed, and a suitable error returned if reflec-
tion occurs: https://github.com/novifinancial/opaque-ke/commit/9c28c8597a6ab33d167f37
11dab1a297b1be7d6d

This issue is considered fixed inv1.2.0.

Client Response - Issue was fixed. Added ReflectedValueError which is thrown upon checking for the
equality of the “beta” value fromRegistrationResponse and CredentialResponse against
the “alpha” value that is stored from RegistrationRequest and CredentialRequest.

* Added a dependency on constant_time_eq to ensure this equality check is done in con-
stant time.
+ Also added tests to exercise this case.

9 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://github.com/novifinancial/opaque-ke/commit/9c28c8597a6ab33d167f3711dab1a297b1be7d6d
https://github.com/novifinancial/opaque-ke/commit/9c28c8597a6ab33d167f3711dab1a297b1be7d6d
https://github.com/novifinancial/opaque-ke/tree/v1.2.0

nccoroup”

Finding
Risk
Identifier
Status
Category
Component
Location

Impact

Description

51
52
53
54
55
56
57
58

59

Recommendation

Retest Results

Client Response

Potential Constraint Violation in Public-Private Key Pairs

Low Impact: Undetermined, Exploitability: Undetermined

NCC-E001000K-002

Fixed

Data Validation

opaque-ke

https://github.com/novifinancial/opaque-ke/blob/v@.5.0/src/keypair.rs#L53

A public method for initializing a KeyPair did not enforce the expected constraint that the

public key corresponds to the private key, potentially violating assumptions made by other
functions in the library.

TheKeyPair structis defined in keypair.rs and provides a container for a public key and private
key. A comment on lines 73-74 of keypair.rs specifies:

At all times, we should have &public_from_private(self.private()) == sel
f.public()

The referenced function can be used to construct aKeyPair from a private key such that this
constraint holds. A generic new() function can also be used to construct a KeyPair from raw
bytes:

/// A constructor that receives public and private key independently as
/// bytes
pub fn new(public: Key, private: Key) -> Result<Self, InternalPakeError> {
Ok(Self {
pk: public,
sk: private,
_g: PhantomData,
b

This function is used elsewhere within the project in conjunction with public_from_private
() to construct a valid KeyPair. Note that the visibility of new() is public, and that it does not
enforce any validity constraints on the constructed KeyPair. Therefore, the function could
potentially be used unsafely by a caller.

If itis assumed that all KeyPair structs represent a valid key pair over their associated group,
then additional validity checks are needed within the new() function. The new() function
could be also be changed to only allow initialization from a private key, with the corresponding
public key being derived. Alternatively, the function’s visibility could be reduced such that no
calls from outside the crate are possible. In the latter case, future uses of the function must
continue to use the new() function safely.

The following patch removes the new() constructor, preventing the unsafe initialization of a
KeyPair invi.2.0: https://github.com/novifinancial/opaque-ke/commit/27f6975136d10adc
9a270283461ed2e5f385ec8a. Therefore, this finding is considered addressed inv1.2.0.

Issue was fixed. Deleted the new() constructor entirely, since it was only used in a single place
(from_private_key_slice).

10 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/keypair.rs#L53
https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/keypair.rs#L32
https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/keypair.rs#L73
https://github.com/novifinancial/opaque-ke/tree/v1.2.0
https://github.com/novifinancial/opaque-ke/commit/27f6975136d10adc9a270283461ed2e5f385ec8a
https://github.com/novifinancial/opaque-ke/commit/27f6975136d10adc9a270283461ed2e5f385ec8a
https://github.com/novifinancial/opaque-ke/tree/v1.2.0

nccoroup”

Finding
Risk
Identifier
Status
Category
Component

Location

Impact

Description

184
185
186

187

225
226
227

228

Recommendation

Retest Results

Client Response

Non-Constant-Time Verification of 3DH Transcript MAC
Low Impact: Medium, Exploitability: Low
NCC-E0Q1000K-006

Fixed

Data Exposure

opaque-ke

https://github.com/novifinancial/opaque-ke/blob/v@.5.0/src/key_exchange/tripledh.rs#L184
https://github.com/novifinancial/opaque-ke/blob/v@.5.0/src/key_exchange/tripledh.rs#L225

An attacker that can precisely measure the timing of the OPAQUE implementation’s verifica-
tion of the transcript hash of the 3DH key exchange may have been able to authenticate a
false 3DH transcript.

The opaque-ke implementation uses triple Diffie-Hellman (3DH) to establish a session key as
a result of a successful OPAQUE protocol exchange. As part of the 3DH key agreement pro-
tocol, a symmetric transcript hash is used to authenticate the 3DH key agreement messages
exchanged between client and server. When the client generates the ke3 message, it verifies
the transcript hash in tripledh.rs as follows:

if ke2_message.mac != server_mac.finalize().into_bytes() {
return Err(ProtocolError: :VerificationError(
PakeError: :KeyExchangeMacValidationError,

));

When the server reaches the final step, processing the client's ke3 message, it similarly verifies
the transcript hash as follows:

if ke3_message.mac != client_mac.finalize().into_bytes() {
return Err(ProtocolError::VerificationError(
PakeError: :KeyExchangeMacValidationError,

));

ke3_message.mac and ke2_message.mac are both of type GenericArray. Thus, the direct
equality comparison will use a generic Rust array equality operation, which runs in time de-
pendent on themac and the array being compared against. Such animplementation may leak
information about the correct symmetric authentication tag through timing side channels. If
an attacker can precisely measure the timing of these comparisons, they may be able to forge
correct symmetric authentication tags for their own transcript.

Change these comparisons to use a constant-time comparison operation, for example by
using the hmac . verify primitive which is in use for envelope authentication.

A later commit was added between opaque-ke versions v@.5.0 and v@.6.0 which changes
the direct comparison to the constant-time implementation provided by hmac.verify. This
change has been applied to v1.2.0: https://github.com/novifinancial/opaque-ke/commit/3c
4Ab7ced825031736a04542103ac490d34f9dae2. Therefore, this issue is considered fixed in
vl.2.0.

Issue was fixed. All MAC checks now rely on the veri fy () function provided by hmac instead
of doing equality checks.

11 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/key_exchange/tripledh.rs#L184
https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/key_exchange/tripledh.rs#L225
https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/key_exchange/tripledh.rs
https://github.com/novifinancial/opaque-ke/commit/940d1dcdb29e9de45a5123adab578b3446502b72
https://github.com/novifinancial/opaque-ke/tree/v0.5.0
https://github.com/novifinancial/opaque-ke/tree/v0.6.0
https://github.com/novifinancial/opaque-ke/tree/v1.2.0
https://github.com/novifinancial/opaque-ke/commit/3c4b7ce4825031736a04542103ac490d34f9dae2
https://github.com/novifinancial/opaque-ke/commit/3c4b7ce4825031736a04542103ac490d34f9dae2
https://github.com/novifinancial/opaque-ke/tree/v1.2.0

nccoroup”

Finding
Risk
Identifier
Status
Category
Component
Location

Impact

Description

497
498
499

500

502
503
504
505

506

Potentially Unsafe Type Conversion of usize

Low Impact: Undetermined, Exploitability: Undetermined

NCC-E001000K-007

Fixed

Data Validation

opaque-ke
https://github.com/novifinancial/opaque-ke/blob/v@.5.0/src/key_exchange/tripledh.rs#L506

Conversion from platform-specific usize to a 2 byte slice may have caused a panic on out of
bound access if usize is too small.

From the section 4.2.1 of the OPAQUE specification:®

The key derivation procedures for OPAQUE-3DH makes use of the functions below,
re-purposed from TLS 1.3 [RFC8446]. HKDF-Expand-Label(Secret, Label, Context,
Length) = HKDF-Expand(Secret, HkdfLabel, Length) Where HkdflLabel is specified
as:

struct {

uint16 length = Length;

opaque label«8..255> = "OPAQUE " + Label;
opaque context<@..255> = Context;

} HkdflLabel;

The corresponding implementation is found in tripledh.rs, where the first step involves writing
the 16-bit length value:

fn hkdf_expand_label_extracted<D: Hash> (
hkdf: &Hkdf<D>,
label: &[u8],
context: &[u8],
length: usize,

) —> Result<Vec<u8>, ProtocolError> {
let mut okm = vec![Qu8; length];

let mut hkdf_label: Vec<u8> = Vec::new();
hkdf_label.extend_from_slice(&length.to_be_bytes()[std::mem::size_of::
> <usize>() - 2..]);

The highlighted line of code sets the 16-bit length by converting the big endian byte rep-
resentation of the length as a usize, and grabbing the last two bytes as a slice. This code
implicitly assumes that the length of a usize is at least 16 bits, otherwise the result will be out
of bounds. The overwhelming majority of Rust's target platforms are either 32-bit or 64-bit,
but support for some 16-bit microcontrollers does exist. While usize will almost certainly be
large enough on any target platform, there is currently no policy which mandates this. See ht
tps://github.com/rust-lang/rfcs/issues/1748 for additional details.

The reviewers noted that logic had been fixed from a previous commit where a 64-bit target
was assumed: hkdf_label .extend_from_slice(&length.to_be_bytes()[6..]);

bhttps://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-03#section-4.2.1

12 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/key_exchange/tripledh.rs#L506
https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/key_exchange/tripledh.rs#L506
https://github.com/rust-lang/rfcs/issues/1748
https://github.com/rust-lang/rfcs/issues/1748
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-03#section-4.2.1

nccoroup”

While the likelihood of this logic ever triggering a panic is negligible, Rust provides several
safer ways to achieve the same result.

Recommendation Because the minimum length of usize is technically undefined, a checked conversion to a
u16 should be performed with proper error checking. Functions such as TryFrom<usize> or
TryInto<ul6> could be considered as an alternative.

Retest Results The following patch inv1.2.0 addresses this finding by using an explicit conversion to a u16
as recommended: https://github.com/novifinancial/opaque-ke/commit/27f6975136d10adc
9a270283461ed2e5f385ec8a

This issue is considered fixed in v1.2.0.

Client Response Issue was fixed. Replaced the offending code with:

let length_ul16: ul6 = ul6::try_from(length).map_err(]|_]|
- PakeError::SerializationError)?;
hkdf_label .extend_from_slice(&length_u16.to_be_bytes());

13 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://github.com/novifinancial/opaque-ke/tree/v1.2.0
https://github.com/novifinancial/opaque-ke/commit/27f6975136d10adc9a270283461ed2e5f385ec8a
https://github.com/novifinancial/opaque-ke/commit/27f6975136d10adc9a270283461ed2e5f385ec8a
https://github.com/novifinancial/opaque-ke/tree/v1.2.0

nccoroup”

Finding
Risk
Identifier
Status
Category
Component
Location

Impact

Description

Missing Error Condition in I20SP Implementation

Low Impact: Low, Exploitability: Low

NCC-E001000K-008

Fixed

Error Reporting

opaque-ke
https://github.com/novifinancial/opaque-ke/blob/v@.5.0/src/serialization/mod.rs#L9

A missing length check when serializing variable-length data may have caused the length
prefix to be set incorrectly, preventing correct deserialization of the resulting data at the
endpoint.

Thevaluesclient_identity andserver_identity representeither clientand server public
keys respectively, or server-specified custom identifiers. These values are used as part of the
3DH protocol, and are contained in the Envelope when the type is “custom_identifier”, as
defined in section 3.1 of the OPAQUE specification:

struct {
opaque server_public_key[Npk];
opaque client_identity<@..2"M6-1>;
opaque server_identity<@..276-1>;
} CleartextCredentials;

These values are serialized by using a 2-byte [20SP-encoded length prefix followed by the raw
bytes, as specified in RFC8017:7

1. If x >= 256"xLen, output "integer too large" and stop.
2. Write the integer x in its unique xLen-digit representation in base 256:

x = x_(xLen-1) 2567 (xLen-1) + x_(xLen-2) 256~ (xLen-2) + ...
+ x_1 256 + x_0O,

where @ <= x_i < 256 (note that one or more leading digits
will be zero if x is less than 2567 (xLen-1)).

3. Let the octet X_i have the integer value x_(xlLen-i) for 1 <= i
<= xLen. Output the octet string

X =X1X2 ... X xlLen.

Note that step 1 in the above function is an explicit check to ensure that the provided length
can be represented in the specified number of bytes.

In opaque-ke, I20SP is implemented in the following function in serialization/mod.rs:

// Corresponds to the I20SP() function from RFC8017
pub(crate) fn i2osp(input: usize, length: usize) -> Vec<u8> {
if length <= std::mem::size_of::<usize>() {

7https://datatracker.ietf.org/doc/html/rfc8017#section-4.1

14 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/serialization/mod.rs#L9
https://datatracker.ietf.org/doc/html/rfc8017#section-4.1

nccoroup”

" return (&input.to_be_bytes()[std::mem::size_of::<usize>() -
-» length..]).to_vec();

12 }

13

14 let mut output = vec![0Qu8; length];

15 output.splice(

16 length — std::mem::size_of::<usize>()..length,

17 input.to_be_bytes().iter().cloned(),

18)

19 output

20 |}

The required length check is not performed, and this function never returns an error. There-
fore, if provided with a value too large to fit in the specified length, an incorrect length value
will be returned.

Recommendation The i2osp() function should be updated to perform an explicit length check as specified in
the RFC, and proper error reporting should be added to detect this condition.

Retest Results The missing check has been added in the following patch onv1.2.0: https://github.com/nov
ifinancial/opaque-ke/commit/f15b37fda4a61ef97025e9112fcff25ec4d23362

This issue is considered fixed inv1.2.0.

Client Response Issue was fixed. The i2osp function now does this check first:

// Check if input >= 2567length
if (sizeof_usize as u32 - input.leading_zeros() / 8) > length as u32({
return Err(PakeError: :SerializationError);

}

Also added tests to exercise this case.

15 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://github.com/novifinancial/opaque-ke/tree/v1.2.0
https://github.com/novifinancial/opaque-ke/commit/f15b37fda4a61ef97025e91f2fcff25ec4d23362
https://github.com/novifinancial/opaque-ke/commit/f15b37fda4a61ef97025e91f2fcff25ec4d23362
https://github.com/novifinancial/opaque-ke/tree/v1.2.0

nccoroup”

Finding
Risk
Identifier
Status
Category
Component

Location

Impact

Description

Outdated and Unmaintained Dependencies

Informational Impact: Undetermined, Exploitability: Undetermined
NCC-E001000K-001

Fixed

Auditing and Logging

opaque-ke

* https://github.com/novifinancial/opaque-ke/blob/v@.5.0/Cargo.toml
¢ https://github.com/novifinancial/opaque-ke/blob/v@.5.0/deny.toml

Failure to update dependencies or to detect and respond to security notices may introduce
future vulnerabilities or increase attack surface.

Cargo Audit

Rust’s cargo-audit utility automates checking for crates for security advisories. The results of
a scan on the opaque-ke repo follow:

>cargo audit
Fetching advisory database from “https://github.com/RustSec/advisory-db.git"”
Loaded 307 security advisories (from .cargo\advisory-db)
Updating crates.io index
Scanning Cargo.lock for vulnerabilities (134 crate dependencies)

Crate: cpuid-bool

Version: 0.1.2

Warning: unmaintained

Title: “cpuid-bool” has been renamed to “cpufeatures®
Date: 2021-05-06

ID: RUSTSEC-2021-0064

URL: https://rustsec.org/advisories/RUSTSEC-2021-0064

Dependency tree:
cpuid-bool 0.1.2

Crate: cpuid-bool

Version: 0.2.0

Warning: unmaintained

Title: “cpuid-bool” has been renamed to “cpufeatures®
Date: 2021-05-06

ID: RUSTSEC-2021-0064

URL : https://rustsec.org/advisories/RUSTSEC-2021-0064

Dependency tree:
cpuid-bool 0.2.0

Crate: crossbeam-epoch
Version: 0.9.1
Warning: yanked

Dependency tree:
crossbeam-epoch 0.9.1
L— crossbeam-deque 0.8.0
— rayon-core 1.9.0
| L— rayon 1.5.0
| L— criterion 0.3.4
| L— opaque-ke 0.5.0

16 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://github.com/novifinancial/opaque-ke/blob/v0.5.0/Cargo.toml
https://github.com/novifinancial/opaque-ke/blob/v0.5.0/deny.toml

nccoroup”

L— rayon 1.5.0

warning: 3 allowed warnings found

Note that these warnings are not necessarily security critical and do not represent vulnerabil-
ities within the project.

The opaque-ke repo appears to utilize cargo-deny, a similar tool that includes additional
dependency-related checks, and includes the warnings highlighted above. An excerpt from
the configuration deny.tom/ follows:

This section is considered when running “cargo deny check advisories’
More documentation for the advisories section can be found here:
https://embarkstudios.github.io/cargo-deny/checks/advisories/cfg.html
[advisories]
The path where the advisory database is cloned/fetched into
db-path = "~/.cargo/advisory-db"
The url of the advisory database to use
db-urls = ["https://github.com/rustsec/advisory-db"]
The lint level for security vulnerabilities
vulnerability = "deny"
The lint level for unmaintained crates
unmaintained = "warn"
The lint level for crates that have been yanked from their source registry
yanked = "warn"
The lint level for crates with security notices. Note that as of
2019-12-17 there are no security notice advisories in
https://github.com/rustsec/advisory-db
notice = "warn"
A list of advisory IDs to ignore. Note that ignored advisories will still
output a note when they are encountered.
ignore = [
#"RUSTSEC-0000-0000"

As highlighted above, crates with disclosed vulnerabilities will trigger a build error, and crates
with a security notice will trigger a warning. While there are currently no published notices in
the RustSec Database, this field could be switched to “deny” to ensure that any future security
notices are highlighted in the future.

Outdated Dependencies

The tool cargo-outdated scans for outdated dependencies. The results of a non-recursive
scan on the v@.5.0 branch follow:

>cargo outdated -R

Name Project Compat Latest Kind Platform
anyhow 1.0.38 1.0.41 1.0.41 Development ——
chacha20poly1305 0.7.1 —_— 0.8.0 Development ——
curve25519-dalek 3.0.2 3.1.0 3.1.0 Normal —_—
displaydoc 0.1.7 —_— 90.2.1 Normal —_—
hex 0.4.2 0.4.3 0.4.3 Development ——
hkdf 0.10.0 — 0.11.0 Normal -
hmac 0.10.1 — 0.11.0 Normal —-—
proptest 0.10.1 -— 1.0.0 Development ——
rand 0.8.3 0.8.4 0.8.4 Normal —

17 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://github.com/novifinancial/opaque-ke/blob/v0.5.0/deny.toml#L30

nccoroup”

Recommendation

Retest Results

Client Response

rustyline 6.3.0 — 8.2.0 Development ——
scrypt 0.5.0 —_— 0.7.0 Normal —_—
serde_json 1.0.62 1.0.64 1.0.64 Development ——
sha2 0.9.3 9.9.5 0.9.5 Development ——
thiserror 1.0.23 1.0.25 1.0.25 Normal —_—
zeroize 1.2.0 1.3.0 1.3.0 Normal —

Note that at the time of review, the v@.5.0 branch is several months old, so updated depen-
dencies are expected. While no specific vulnerabilities were identified in the currently used
versions, it is nevertheless best practice to keep dependencies up to date.

+ Consider increasing the warning level of security notices to “deny”.
+ Use up-to-date dependencies wherever possible, particularly when packages are security-
related.

The following patch addressed recommendations by increasing the severity of security notices
from “warn” to “deny” on the v1.0.0 release: https://github.com/novifinancial/opaque-ke/c
ommit/27f6975136d10adc9a270283461ed2e5f385ec8a

The following patch updated several dependencies and bumps the Minimum Supported Rust
Version (MSRV) to1.51 as part of v.1.2.0: https://github.com/novifinancial/opaque-ke/com
mit/e66140b71287e7227de5745dd33ae8321ceed5bc

Similarly, the following patch on v@.6.0 updated several dependencies: https://github.com
/novifinancial/opaque-ke/commit/ed086c95284fc06c2dbbad15e9aea2bca3c3a1b6

Updated crates include;

* curve25519-dalek
* hkdf
* hmac

These represent the core security libraries utilized by opaque—ke.

The general recommendation to ensure that dependencies are kept up to date remains as
best practice. The commit history for both thev1.2.0 (Draft 83)and v@. 6.0 (Draft ©5) branches
indicate that updates are monitored and applied as part of the release process. Therefore,
this finding is considered fixed.

Issue was fixed. Changednotice = “warn” tonotice = “deny” indenytoml. Ensured
that all dependencies were up to date (at the time of the fix) by running cargo check.

18 | WhatsApp LLC Security Assessment - opaque-ke

NCC Group

https://github.com/novifinancial/opaque-ke/tree/v1.0.0
https://github.com/novifinancial/opaque-ke/commit/27f6975136d10adc9a270283461ed2e5f385ec8a
https://github.com/novifinancial/opaque-ke/commit/27f6975136d10adc9a270283461ed2e5f385ec8a
https://github.com/novifinancial/opaque-ke/tree/v1.2.0
https://github.com/novifinancial/opaque-ke/commit/e66140b71287e7227de5745dd33ae8321cee45bc
https://github.com/novifinancial/opaque-ke/commit/e66140b71287e7227de5745dd33ae8321cee45bc
https://github.com/novifinancial/opaque-ke/commit/ed086c95284fc06c2dbba015e9aea2bca3c3a1b6
https://github.com/novifinancial/opaque-ke/commit/ed086c95284fc06c2dbba015e9aea2bca3c3a1b6

nccoroup”

Finding OPRF Blinding Scalar Can Be Chosen At Random To Be The Zero Element In GF(p)
Risk Informational Impact: High, Exploitability: Low
Identifier NCC-E0Q1000K-005
Status Fixed
Category Data Validation
Component opaque-ke

Impact The OPRF password-derived key may have been set to a zero-filled byte array, with negligible
probability in the absence of other implementation issues. This may have permitted attackers
to easily decrypt credentials protected with this key, in transit or at rest.

Description The opaque—ke library includes an implementation of the OPAQUE protocol. OPAQUE relies
on the Oblivious Pseudorandom Function (OPRF) protocol for two parties to compute the
output of a PRF. In this protocol, the client generates a token and blinding data. The server
computes the OPRF evaluation over this blinded token. The client then unblinds the server
response and produces the password-derived key. Section “3.4.3.1. Blind” of Draft @6 of the
“Oblivious Pseudorandom Functions (OPRFs) using Prime-Order Groups” RFC® explains that
the blinded data must be derived as follows:

def Blind(input):
blind = GG.RandomScalar()
P = GG.HashToGroup(input)
blindedElement = GG.SerializeElement(blind * P)

return blind, blindedElement

In the above pseudo-code, function RandomScalar() is a member function of GG, a prime-
order group, that chooses at random a non-zero elementinGF (p), a finite field of prime order

p.

opaque-ke's random_scalar () function is used to create blinding factors as follows:

fn random_scalar<R: RngCore + CryptoRng>(rng: &mut R) -> Self::Scalar {
#[cfg(not(test))]

{
let mut scalar_bytes = [0Qu8; 64];
rng.fill_bytes(&mut scalar_bytes);
Scalar: : from_bytes_mod_order_wide(&scalar_bytes)
}

// Tests need an exact conversion from bytes to scalar, sampling only 32
- bytes from rng
#[cfg(test)]

{
let mut scalar_bytes = [Qu8; 32];
rng.fill_bytes(&mut scalar_bytes);
Scalar: : from_bytes_mod_order(scalar_bytes)
}

Note that there is no branch here which checks that the randomly generated value is non-zero.

8https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-@6#section-3.4.1

19 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-06#section-3.4.1

nccoroup”

This is a deviation from the OPRF protocol specification, which may have an adverse security
impact. Indeed, if the OPRF protocol is fully evaluated by all parties with a blinding value
of zero, then the password-derived key will be a byte array filled with zeros. This would in
turn permit attackers to decrypt client credentials wrapped in an OPAQUE envelope, without
knowledge of the client password, be it in transit between the client and server, or at rest on
the server.

However, in the absence of other implementation issues, the probability of generating the
zero group element at random is negligible.

Recommendation Update the random_scalar() function to return only non-zero values in all places where
non-zero scalars are specified by the OPAQUE RFC.

Retest Results It was verified that a new commit changes this function to random_nonzero_scalar (), which
loops until a non-zero random scalar is found, only ever returning a non-zero scalar: https://gi
thub.com/novifinancial/opaque-ke/commit/a69ad9473aa046c03854ce23534dbfaac24ea2c

This finding is considered addressed inv1.2.0.

Client Response Issue was fixed. Changes the random_scalar() function to random_nonzero_scalar(),
which loops until a non-zero random scalar is found, only ever returning a non-zero scalar.

20 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://github.com/novifinancial/opaque-ke/commit/a69ad9473aa046c03854ce23534dbfaac24ea2c1
https://github.com/novifinancial/opaque-ke/commit/a69ad9473aa046c03854ce23534dbfaac24ea2c1
https://github.com/novifinancial/opaque-ke/tree/v1.2.0

Appendix A: Finding Field Definitions nccoroup”

The following sections describe the risk rating and category assigned to issues NCC Group identified.

Risk Scale

NCC Group uses a composite risk score that takes into account the severity of the risk, application’s exposure and
user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group’s recommended
prioritization for addressing findings. Every organization has a different risk sensitivity, so to some extent these
recommendations are more relative than absolute guidelines.

Overall Risk

Overall risk reflects NCC Group's estimation of the risk that a finding poses to the target system or systems. It takes
into account the impact of the finding, the difficulty of exploitation, and any other relevant factors.

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily accessible threat of large-scale
breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a small portion of the
application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for application improvement,
functional issues with the application, or conditions that could Iater lead to an exploitable finding.

Impact

Impact reflects the effects that successful exploitation has upon the target system or systems. It takes into account
potential losses of confidentiality, integrity and availability, as well as potential reputational losses.

High Attackers can read or modify all data in a system, execute arbitrary code on the system, or escalate
their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny access to that system, or
gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly degrade system
performance. May have a negative public perception of security.

Exploitability

Exploitability reflects the ease with which attackers may exploit a finding. It takes into account the level of access
required, availability of exploitation information, requirements relating to social engineering, race conditions, brute
forcing, etc, and other impediments to exploitation.

High Attackers can unilaterally exploit the finding without special permissions or significant roadblocks.

Medium Attackers would need to leverage a third party, gain non-public information, exploit a race condition,
already have privileged access, or otherwise overcome moderate hurdles in order to exploit the
finding.

Low Exploitation requires implausible social engineering, a difficult race condition, guessing difficult-to-
guess data, or is otherwise unlikely.

21 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

nccoroup”

Category
NCC Group categorizes findings based on the security area to which those findings belong. This can help organizations
identify gaps in secure development, deployment, patching, etc.
Access Controls Related to authorization of users, and assessment of rights.
Auditing and Logging Related to auditing of actions, or logging of problems.
Authentication Related to the identification of users.
Configuration Related to security configurations of servers, devices, or software.
Cryptography Related to mathematical protections for data.
Data Exposure Related to unintended exposure of sensitive information.
Data Validation Related to improper reliance on the structure or values of data.
Denial of Service Related to causing system failure.
Error Reporting Related to the reporting of error conditions in a secure fashion.
Patching Related to keeping software up to date.
Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

22 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

e.
Appendix B: OPAQUE Draft 83 Requirements Review NCCQroup

The reviewed version of opaque-ke (v@.5.0) implements Draft 03 of the OPAQUE specification: https://www.ietf.org/a
rchive/id/draft-irtf-cfrg-opaque-@3.html. This section surveys formal requirements (e.g., SHALL, MUST, SHOULD) from
the RFC, as well as other technical requirements identified in the same document, and explains how opaque-ke meets
these requirements.

Requirement:
Clients MUST NOT use the same key pair (client_private_key, client_public_key) for two different accounts.

The currentimplementation generates a fresh keypair internally as part of ClientRegistration: : finish() inopaque.rs
line 187: https://github.com/novifinancial/opaque-ke/blob/v@.5.0/src/opaque.rs#L187

Requirement:
Both client and server MUST validate the other party’s public key(s) used for the execution of OPAQUE.

The providedKeyPair struct defines a method check_public_key () for this purpose. This function is used to validate
a public key on deserialization in the following situations:

* Deserializing a ServerRegistration message containing the client's public key. https://github.com/novifinancial/o
paque-ke/blob/v@.5.0/src/opaque.rs#L287

* Deserializing aRegistrationUpload message containing the client's public key. https://github.com/novifinancial/o
paque-ke/blob/v@.5.0/src/messages.rs#L118

* Deserializing a CredentialResponse message containing the server’s public key. https://github.com/novifinancial
/opaque-ke/blob/v@.5.0/src/messages.rs#L210

The OPAQUE RFC provides additional explicit guidance on validating certain types of keys:

This includes checking that the coordinates are in the correct range, that the point is on the curve, and
that the point is not the point at infinity. Additionally, validation MUST ensure the Diffie-Hellman shared
secret is not the point at infinity.

The opaque-ke implementation is defined over the Ristretto Group, so length and point validation are implicit; however,
there is no check for the point at infinity, as noted in finding NCC-E001000K-005 on page 19.

Requirement:
The “EnvelopeMode” value. This MUST be one of “base” or “custom_identifier”.

The enum ClientRegistrationFinishParameters encapsulates these two options, with “base” being the default
case. Rust's exhaustive matching ensures both cases are correctly handled during serialization.

Requirement:
Upon completion of this [client registration] function, the client MUST send “record” to the server.

The actual sending of messages is out of scope of the library. The provided examples acknowledge this step; e.g. http
s://github.com/novifinancial/opaque-ke/blob/v@.5.8/examples/simple_login.rs#L.86

Requirement:

The type of keys MUST be suitable for the key exchange protocol. For example, if the key exchange protocol
is 3DH, as described in Section 4.2.2, then the private and public keys must be Diffie-Hellman keys.

23 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-03.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-03.html
https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/opaque.rs#L187
https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/opaque.rs#L187
https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/opaque.rs#L287
https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/opaque.rs#L287
https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/messages.rs#L118
https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/messages.rs#L118
https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/messages.rs#L210
https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/messages.rs#L210
https://github.com/novifinancial/opaque-ke/blob/v0.5.0/examples/simple_login.rs#L80
https://github.com/novifinancial/opaque-ke/blob/v0.5.0/examples/simple_login.rs#L80

nccoroup”

The opaque-ke library provides a CipherSuite trait to allow support of new algorithms, which contains a Group
trait encapsulating this requirement. The only supported Group by default is the Ristretto Group, which satisfies the
specified requirements.

Requirement:

OPAQUE produces two outputs: a session secret and an export key. The export key may be used for
additional application-specific purposes, as outlined in Section 6.4. The output “export_key” MUST NOT be
used in any way before the HMAC value in the envelope is validated.

The export key is contained in an envelope returned from the server. As part of ClientLogin: : finish() the envelope
is opened, which will throw an error if the HMAC is not successfully validated. All retrieved values are taken from the
“opened” envelope after validation: https://github.com/novifinancial/opaque-ke/blob/v@.5.0/src/opaque.rs#L591

Requirement:

We note that by the results in [OPAQUE], KE2 and KE3 must authenticate credential_request and cre-
dential_response, respectively, for binding between the underlying OPRF protocol messages and the KE
session.

The 3DH protocol used in opaque-ke includes HMACs on KE2 and KE3, which are verified during final processing of
the respective messages.

« KE2: https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/key_exchange/tripledh.rs#L184
« KE3: https://github.com/novifinancial/opaque-ke/blob/v@.5.0/src/key_exchange/tripledh.rs#L225

Note that these HMAC verifications are not constant time, as documented in finding NCC-E001000K-006 on page 11.
The OPAQUE specification mandates a constant time MAC validation for credential envelopes, but does not formally
specify the same for the Authenticated Key Exchange (AKE) protocol itself. To prevent timing attacks, use of the ct_eq
ual () primitive described in the OPAQUE specification should be adopted. This issue has been fixed in newer releases
of the specification and library.

Requirement:

We use the parameters Npk and Nsk to denote the size of the public and private keys used in the AKE
instantiation. Npk and Nsk must adhere to the output size limitations of the HKDF Expand function from
[RFC5869], which means that Npk, Nsk <= 255 * Nh. ... The parameters Npk and Nsk are set to be equal
to the size of an element and scalar, respectively, in the associated prime order group.

The default (and only supported) configuration of opaque-ke uses the Ristretto Group and SHA-512 such that:

- Nh=64
* Npk =32
* Nsk =32

which satisfy the necessary constraints.

Requirement:
The Group mode identifies the group used in the OPAQUE-3DH AKE. This SHOULD match that of the OPRF.

The default (and only) configuration of opaque-ke uses the Ristretto Group for both the AKE and OPRF. The CipherSu
ite trait only contains one Group, which ensures this requirement is likely to be met by any additional algorithm that

24 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/opaque.rs#L591
https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/key_exchange/tripledh.rs#L184
https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/key_exchange/tripledh.rs#L225

33

34

35

36

37

38

nccoroup”

may be added in the future.

Requirement:
Applications SHOULD select parameters that balance cost and complexity.

The OPAQUE specification provides concrete recommendations for 3DH groups, but not parameters for Memory Hard
Functions (MHFs). In particular, specific MHFs are suggested, but no work factor is defined.

The OPAQUE MHFs include Argon2 [I-D.irtf-cfrg-argon2], scrypt [RFC7914], and PBKDF2 [RFC2898] with
fixed parameter choices.

In opaque-ke, these are defined in slow_hash.rs for scrypt.

#[cfg(feature = "slow-hash")]

const DEFAULT_SCRYPT_LOG_N: u8 = 15u8;
#[cfg(feature = "slow-hash")]

const DEFAULT_SCRYPT_R: u32 = 8u32;
#[cfg(feature = "slow-hash")]

const DEFAULT_SCRYPT_P: u32 = 1u32;

These parameters are in line with common recommendations, e.g. by OWASP,? thus satisfying this requirement.

Note that newer releases of the library have removed scrypt in favor of Argon2. These changes were not part of the
v0.5.0 release targeted by this review.

* Argon 2 Support: opaque-ke/commit/535b9b8ee41392¢2a0c100f71f5cd04497a61817
* Remove scrypt: opaque-ke/commit/ca50d92f966e5f5dd17f1b96a79acddce7fdbca2

Requirement: Client Enumeration Protections

Note that if the same CredentialRequest is received twice by the server, the response needs to be the same
in both cases (since this would be the case for real clients).

Client enumeration refers to attacks where the attacker tries to learn whether a given client identity is
registered with a server. Preventing such attacks requires the server to act with unknown client identities
in a way that is indistinguishable from its behavior with existing clients. ... Care needs to be taken to
avoid side-channel leakage (e.g., timing) from helping differentiate these operations from a regular server
response.

The specification provides a solution wherein the server uses a dummy key and a zero-vector in place of the actual
credentials when a user does not exist. As noted in ?? on page ??, explicit protections against client enumeration are
not implemented in v@.5.0, but have been added to newer releases of the library.

Other Notes

OPAQUE Draft 03 specifies the following data types for client_identity and server_identity:

struct {
opaque server_public_key[Npk];
opaque client_identity<@..2/M6-1>;
opaque server_identity«<@..276-1>;
} CleartextCredentials

9OWASP Password Storage Cheat Sheet: https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

25 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/slow_hash.rs#L33
https://github.com/novifinancial/opaque-ke/commit/535b9b8ee41392c2a0c100f71f5cd04497a61817
https://github.com/novifinancial/opaque-ke/commit/ca50d92f966e5f5dd17f1b96a79acddce7f4bc42
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

nccoroup”

The following guidance is provided:

If the application layer does not supply values for these parameters, then they will be omitted from the cre-
ation of the envelope during the registration stage. Furthermore, they will be substituted with client_identity
= client_public_key and server_identity = server_public_key during the authenticated key exchange stage.

There is potential ambiguity here, as a custom envelope with empty identifiers could be interpreted as intentionally
supplied empty strings to be used as such, or as omitted values where the appropriate public key should be used. The
reviewed version of opaque—ke will use empty identifiers as-is.

The most recent OPAQUE specification (Draft ©5) has been updated to disallow empty identifiers:

struct {
uint8 server_public_key[Npk];
uint8 server_identity<1..27M6-1>;
uint8 client_identity<1..276-1>;
} CleartextCredentials;

26 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

722

723

724

725

726

727

728

Appendix C: Client Enumeration Attacks nccgroupe'

This section summarizes a finding related to client enumeration that is better characterized as a potential attack against
the reviewed version of OPAQUE, rather than against the implementation in opaque-ke. Although client enumeration
attacks may not apply in all use cases, the content within this section may be of interest to users of the opaque-ke
library.

Details

In many applications, the fact that a given client is registered with a server may be considered sensitive information.
Therefore, a server utilizing OPAQUE must not treat a client login request for an unregistered user in a manner that is
distinguishable from a registered user. Draft 83 of the OPAQUE specification suggests potential safeguards to protect
against client enumeration in section 6.8:"°

Here we suggest a way to implement such defense, namely, a way for simulating a CredentialResponse for
non-existing clients. Note that if the same CredentialRequest is received twice by the server, the response
needs to be the same in both cases (since this would be the case for real clients).

Upon receiving a CredentialRequest for a non-existing client client_identity, S computes oprf_key = f(MK;
client_identity) and oprf_key' = f(MK’; client_identity) and responds with CredentialResponse carrying Z =
M"oprf_key and envelope, where the latter is computed as follows. prk is set to oprf_key’' and secret_creds
is set to the all-zero string (of the length of a regular envelope plaintext). Care needs to be taken to
avoid side- channel leakage (e.g., timing) from helping differentiate these operations from a regular server
response. The above requires changes to the server-side implementation but not to the protocol itself or
the client-side.

Note that more recent drafts of the specification have formally specified application-specific requirements for enumer-
ation protection (e.g. Section 8 of Draft 6'"):

Enumeration prevention: As described in Section 6.1.2.2, if servers receive a credential request for a non-
existent client, they SHOULD respond with a “fake” response in order to prevent active client enumeration
attacks. Servers that implement this mitigation SHOULD use the same configuration information (such as
the oprf_seed) for all clients; see Section 9.8. In settings where this attack is not a concern, servers may
choose to not support this functionality.

Also,

In the case of a record that does not exist, the server SHOULD invoke the CreateCredentialResponse
function where the record argument is configured so that: record.masking_key is set to a random byte
string of length Nh, and record.envelope is set to the byte string consisting only of zeros, of length Ne.

In the reviewed opaque-ke library, the CredentialResponse message is computed by the ServerLogin: :start()
function in opaque.rs:

pub fn start<R: RngCore + CryptoRng>(
rng: &mut R,
password_file: ServerRegistration<CS>,
server_s_sk: &Key,
11: CredentialRequest«<CS>,
params: ServerLoginStartParameters,
) —=> Result<ServerlLoginStartResult<CS>, ProtocolError> {

In this function the input to the PRF is taken directly from the provided password_file, which is stored at the time of
registration, and passed to this function in order to enable the retrieval of the client’s credentials. Part of this process

"®https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-03#section-6.8
" https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque#section-8

27 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://github.com/novifinancial/opaque-ke/blob/v0.5.0/src/opaque.rs#L722
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-03#section-6.8
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque#section-8

759

726

727

728

729

730

731

732

733

734

735

736

737

nccoroup”

involves the evaluation of the OPRF function, which uses the opr f_key as provided in the password_file:

let beta = oprf::evaluate(l1.alpha, &password_file.oprf_key); ‘

The function then proceeds on the envelope as stored in the password_file. There is no provided interface or logic
to accommodate an unregistered user (where no password_file exists), which would require the calling library to
re-implement portions of the OPAQUE protocol to compute a dummy response, or to reject requests in a way that
prevents enumeration.

It is important to note that the above protection refer specifically to the client login message flows. Alternate protec-
tions on the registration process are still required, such as rate limiting, due to the need for distinguishable registration
messages, but are out scope of the OPAQUE protocol itself.

Recommendation

The enumeration protections suggested (and now required, in recent drafts) in the OPAQUE specification should be
implemented, and clear guidance on the correct usage should be provided in the function documentation and the
provided examples.

Client Response

Properly supporting client enumeration protections requires a change in the specification. The v1.0.0 [and the
updated v1.2.0] release targets Draft @3 of the OPAQUE specification which did not formally specify requirements for
client enumeration protections, and hence cannot have proper protections in place. Releases of opaque-ke targeting
later versions of the specification do implement the required protections.

Re-test Results

This issue was identified in v@.5.0 release of the library. Subsequently, the following patch added a large disclaimer
within the code explaining client enumeration attacks and providing additional guidance to users of the library: http
s://github.com/novifinancial/opaque-ke/commit/eb50728849bca4fc93fe7fb6999¢c3d7da696d1d1

The current master branch, which targets a newer version of the OPAQUE specification, includes additional protections
against client enumeration. While a formal review of the current master branch was not performed, it was examined
specifically for changes related to client enumeration. The changes described here implement current recommenda-
tions to avoid enumeration attacks, thereby fixing the issue.

The following patch introduces initial protections against enumeration attacks, including the notion of a dummy enve-
lope and the ability to call the ServerLogin: :start() function with an optional password file: https://github.com/n
ovifinancial/opaque-ke/pull/153. Note that the actual handling of a dummy password_file was not included as part
of this patch initially.

Subsequently, v@.6.0 does include handling for this case in opaque.rs:

pub fn start<R: RngCore + CryptoRng>(
rng: &mut R,
server_setup: &ServerSetup<CS>,
password_file: Option<ServerRegistration<CS>>,
11: CredentialRequest<CS>,
credential_identifier: &[u8],
params: ServerlLoginStartParameters,
) —> Result<ServerlLoginStartResult<CS>, ProtocolError> {
let record = match password_file {
Some(x) => x,
None => ServerRegistration::dummy(rng, server_setup),

be

28 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://github.com/novifinancial/opaque-ke/tree/v1.0.0
https://github.com/novifinancial/opaque-ke/tree/v1.2.0
https://github.com/novifinancial/opaque-ke/tree/v0.5.0
https://github.com/novifinancial/opaque-ke/commit/eb50728849bca4fc93fe7fb6999c3d7da696d1d1
https://github.com/novifinancial/opaque-ke/commit/eb50728849bca4fc93fe7fb6999c3d7da696d1d1
https://github.com/novifinancial/opaque-ke/pull/153
https://github.com/novifinancial/opaque-ke/pull/153
https://github.com/novifinancial/opaque-ke/tree/v0.6.0
https://github.com/novifinancial/opaque-ke/blob/v0.6.0/src/opaque.rs#L730

185

186

187

188

189

190

191

192

193

194

195

196

197

198

167

168

169

170

17

172

173

174

175

176

177

nccoroup”

Where a dummy password_file is instantiated by the ServerRegistration: :dummy() function in messages.rs:

// Creates a dummy instance used for faking a [CredentialResponse]
pub(crate) fn dummy<R: RngCore + CryptoRng>(
rng: &mut R,
server_setup: &ServerSetup<CS>,
) —> Self {
let mut masking_key = vec![Qu8; <CS::Hash as Digest>::OutputSize::to_usize()];
rng.fill_bytes(&mut masking_key);

Self {
envelope: Envelope::<CS>::dummy(),
masking_key: GenericArray::clone_from_slice(&masking_key),
client_s_pk: server_setup.fake_keypair.public().clone(),

With the corresponding dummy Envelope as defined in envelope.rs:

// Creates a dummy envelope object that serializes to the all-zeros byte string
pub(crate) fn dummy() -> Self {
Self {
mode: InnerEnvelopeMode: :Zero,
nonce: vec![Qu8; NONCE_LEN],
hmac: GenericArray::clone_from_slice(&vec! [
Qus;

<CS::Hash as Digest>::OutputSize::to_usize()
1),

This dummy envelope satisfies the current requirements cited above:

* record.masking_key is set to a random byte string of length Nh
* record.envelope is set to the byte string consisting only of zeros, of length Ne

The function proceeds using the same codepath for both dummy and real envelopes, thus implementing the required
protections against enumeration attacks.

As a result of the above changes, this issue is considered to be addressed in v@.6.0.

29 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://github.com/novifinancial/opaque-ke/blob/v0.6.0/src/messages.rs#L186
https://github.com/novifinancial/opaque-ke/blob/v0.6.0/src/envelope.rs#L168
https://github.com/novifinancial/opaque-ke/tree/v0.6.0

Appendix D: OPAQUE RFC Comments nccgroupe'

While a formal review of the OPAQUE RFC was not in scope, this section highlights findings from Draft ©3 and Draft 65
of the RFC that may be of interest to the opaque-ke developers, or editors of the RFC.

Serialization of Identities

Client and server information is stored in an Envelope structure, which can be a “base” configuration containing public
keys, or a “custom” configuration containing a server-defined client_identity and server_identity, such as an
email address, account name, etc. These values are serialized as part of the authenticated key exchange using I20SP.
While investigating finding NCC-E001000K-008 on page 14, it was noted that opaque-ke uses I20SP when serializing
these values when sending / receiving an Envelope. However, the Draft 83 of the OPAQUE specification does not
appear to provide any guidance on the serialization of these values outside of their use in 3DH.

During the final step of registration, the client sends a record of the registration to the server to complete the process,
which includes the Envelope containing client_identity and server_identity. Concrete recommendations on
the serialization of this structure (e.g., using I20SP) would remove ambiguity in this process.

Invalid Hyperlinks

Draft @5 of the RFC contains several enumerated lists with incorrect IDs such that section anchors do not work as
expected. For example, the link https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque#section-8 is expected to
target Section 8 of the document, but instead targets Step 8 of the CreateEnvelope() function due to the following
incorrect label associated with the enumerated list:

8

This appears to be a consistent problem across all enumerated lists with hyperrefs in the document.

Constant Time MAC Verification

As part of this report, finding NCC-E001000K-006 on page 11 observed that the validation of some HMACs was not
constant time. It was similarly observed that DRAFT @3 of the OPAQUE RFC did not require constant time checks on
these values, despite requiring a constant time check on Envelope HMAC validation. Explicit use of constant time
checks has since been added to Draft @5 and is implemented in opaque-ke v0.6.0.

Mitigating Server Reflection

This report highlighted a potential reflection attack in finding NCC-E001000K-010 on page 7 where a malicious server
can force the client's randomized password to a non-randomized password value, potentially leading to additional
unexpected exposure of the client's password such as through usage of the export key.

This attack applies to the OPAQUE protocol itself, not just the opaque-ke implementation. An explicit check and
rejection of a reflected value could be added to the specification to ensure such an attack is mitigated appropriately.

30 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-03
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-05
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque#section-8

Appendix E: Updates and Patches Afterv0.5.06 NCCQ(OUp%

The target of this review is the v@.5.0 release of the opaque-ke library. Since this release, both the OPAQUE specifi-
cation and the implementation have evolved. The following is a list of patches that appear to be security-related since
the release of v@.5.0, which are part of the v@.6.0 release targeting Draft 05 of the OPAQUE specification. These
commits are not formally reviewed as part of this report, although some are explained alongside relevant findings
where applicable.

Zeroize keys on drop: opaque-ke/commit/468e0690d7f2ae91c9a55474fcf40b0457519385

Add zeroize on drop for remaining intermediate API states and tests: opaque-ke/commit/8bc5e7dc@289b0ed62c4
1176da@84b6b2061bc63

Ensuring mac operations are constant-time: opaque-ke/commit/940d1dcdb29e9de4535123adab578b3446502b72
Ensure that all public keys are being checked when deserialized: opaque-ke/commit/30e27a11e2386f9a4870d017
ba2b13fb9f815898

Enforce public vs private keys via types: opaque-ke/commit/210e0e99dfbed96fa9161c0@aeb2cfae93ee76a2
Adding identity element checks and ensuring non-zero scalar selection: opaque-ke/commit/98f1821897cd2800e5b
ffb2a70541056145e99¢c

Adding client enumeration mitigations: opaque-ke/commit/féc13945d1bca40933bacfd156441235a54fdb63

Argon 2 Support: opaque-ke/commit/535b9b8eed1392¢c2a0c100f71f5cd04497a61817

Remove scrypt: opaque-ke/commit/ca50d92f966e5f5dd17f1b96a79acddce7f4bc42

Update dependencies: opaque-ke/commit/ed@86c95284fc@6c2dbbad15e9aea2bca3c3albb

Fixing minor nits: conversion to u16 and removing keypair constructor: opaque-ke/commit/c8c57785afb2ea433a8
f97d4b475fc1a064f2730

31 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://github.com/novifinancial/opaque-ke/commit/468e0690d7f2ae91c9a55474fcf40b0457519385
https://github.com/novifinancial/opaque-ke/commit/8bc5e7dc0289b0e462c41176da084b6b2061bc63
https://github.com/novifinancial/opaque-ke/commit/8bc5e7dc0289b0e462c41176da084b6b2061bc63
https://github.com/novifinancial/opaque-ke/commit/940d1dcdb29e9de45a5123adab578b3446502b72
https://github.com/novifinancial/opaque-ke/commit/30e27a11e2386f9a4870d017ba2b13fb9f815898
https://github.com/novifinancial/opaque-ke/commit/30e27a11e2386f9a4870d017ba2b13fb9f815898
https://github.com/novifinancial/opaque-ke/commit/210e0e99dfbe096fa9161c00aeb2cfae93ee76a2
https://github.com/novifinancial/opaque-ke/commit/98f1821897cd2800e5bffb2a70541056145e99cc
https://github.com/novifinancial/opaque-ke/commit/98f1821897cd2800e5bffb2a70541056145e99cc
https://github.com/novifinancial/opaque-ke/commit/f0c13945d1bca40933bacfd156441235a54fdb63
https://github.com/novifinancial/opaque-ke/commit/535b9b8ee41392c2a0c100f71f5cd04497a61817
https://github.com/novifinancial/opaque-ke/commit/ca50d92f966e5f5dd17f1b96a79acddce7f4bc42
https://github.com/novifinancial/opaque-ke/commit/ed086c95284fc06c2dbba015e9aea2bca3c3a1b6
https://github.com/novifinancial/opaque-ke/commit/c8c57785afb2ea433a8f97d4b475fc1a064f2730
https://github.com/novifinancial/opaque-ke/commit/c8c57785afb2ea433a8f97d4b475fc1a064f2730

Appendix F: Updates and Patches in v1.2.0 nccgroup%

In response to the initial findings in this report, opaque-ke v1.2.0 was released. This release still targets Draft 03
of the OPAQUE RFC, but incorporates several security-related patches, some of which are picked from changes that
already existed on the v@.6.0 or master branches, targeting newer drafts of the RFC. The complete list of patches
applied between ve.5.0 and v1.2.0 follows:

https://github.com/novifinancial/opaque-ke/commits/v1.2.0

Zeroize keys on drop: opaque-ke/commit/ec8f87944baaf45296e747b66bce293d1255e46e

Add zeroize on drop for remaining intermediate API states and tests: opaque-ke/commit/05427dd97d069aeefd73
2e043ea4b8c0c6f813ab

Ensuring mac operations are constant-time: opaque-ke/commit/3c4b7ce4825031736a04542103ac490d34f9dae
2

Fixing minor nits: conversion to u16 and removing keypair constructor: opaque-ke/commit/27f6975136d10ad
€9a270283461ed2e5f385ec8a

Adding i2osp error checking condition: opaque-ke/commit/f15b37fda4a61ef97025e91f2fcff25ec4d23362
Adding identity element checks and ensuring non-zero scalar selection: opaque-ke/commit/a69ad9473aad46c
03854ce23534dbfaac24ea2c

Switch CI to using stable instead of nightly toolchain: opaque-ke/commit/e5619d48cd@2a848adee2f743e0368a42
5719ee3

Adding reflected value check on client side: opaque-ke/commit/9c28c8597a6ab33d167f3711dab1a297b1be7d6
d

Publishing v@.5.1: opaque-ke/commit/0c535c0989ef61fb6b3de790efdad9b3e0e9917d

Publishing v1.0.0: opaque-ke/commit/2e7147ed64d0d038e35f32706493b870c131f03¢

Updating dependencies and bumping MSRV to 1.51: opaque-ke/commit/e66140b71287e7227de5745dd33ae83
21cee45bc

Adding no_std support for v1: opaque-ke/commit/f17f96328879d2380eb6ddab4af27daa@bb69cal3

Publishing v1.1: opaque-ke/commit/65ce753dccc146f8c50dc126dfa87e5cc0a8c300

Adding warning about client enumeration attacks for v1: opaque-ke/commit/eb50728849bca4fc93fe7fb6999c3
d7da696d1d1

Adding thumbv6m-none-eabi support for vi1: opaque-ke/commit/f39f30727000b61930e69d191b220d836€03c626
Publishing v1.2.0: opaque-ke/commit/6538ee30e118cfc99c1f5bffed2c151e2eaffd2d

The emphasized commits directly address one or more findings identified in this report.

32 | WhatsApp LLC Security Assessment - opaque-ke NCC Group

https://github.com/novifinancial/opaque-ke/tree/v1.0.0
https://github.com/novifinancial/opaque-ke/commits/v1.2.0
https://github.com/novifinancial/opaque-ke/commit/ec8f87944baaf45296e747b66bce293d1255e46e
https://github.com/novifinancial/opaque-ke/commit/05427dd97d069aeefd732e04aea4b8c0c6f813ab
https://github.com/novifinancial/opaque-ke/commit/05427dd97d069aeefd732e04aea4b8c0c6f813ab
https://github.com/novifinancial/opaque-ke/commit/3c4b7ce4825031736a04542103ac490d34f9dae2
https://github.com/novifinancial/opaque-ke/commit/3c4b7ce4825031736a04542103ac490d34f9dae2
https://github.com/novifinancial/opaque-ke/commit/27f6975136d10adc9a270283461ed2e5f385ec8a
https://github.com/novifinancial/opaque-ke/commit/27f6975136d10adc9a270283461ed2e5f385ec8a
https://github.com/novifinancial/opaque-ke/commit/f15b37fda4a61ef97025e91f2fcff25ec4d23362
https://github.com/novifinancial/opaque-ke/commit/a69ad9473aa046c03854ce23534dbfaac24ea2c1
https://github.com/novifinancial/opaque-ke/commit/a69ad9473aa046c03854ce23534dbfaac24ea2c1
https://github.com/novifinancial/opaque-ke/commit/e5619d48cd02a848adee2f743e0368a425719ee3
https://github.com/novifinancial/opaque-ke/commit/e5619d48cd02a848adee2f743e0368a425719ee3
https://github.com/novifinancial/opaque-ke/commit/9c28c8597a6ab33d167f3711dab1a297b1be7d6d
https://github.com/novifinancial/opaque-ke/commit/9c28c8597a6ab33d167f3711dab1a297b1be7d6d
https://github.com/novifinancial/opaque-ke/commit/0c535c0989ef61fb6b3de790efdad9b3e0e9917d
https://github.com/novifinancial/opaque-ke/commit/2e7147ed64d0d038e35f32706493b870c131f03c
https://github.com/novifinancial/opaque-ke/commit/e66140b71287e7227de5745dd33ae8321cee45bc
https://github.com/novifinancial/opaque-ke/commit/e66140b71287e7227de5745dd33ae8321cee45bc
https://github.com/novifinancial/opaque-ke/commit/f17f90328879d2380e6ddab4af27daa0bb69ca13
https://github.com/novifinancial/opaque-ke/commit/65ce753dccc146f8c50dc126dfa87e5cc0a8c300
https://github.com/novifinancial/opaque-ke/commit/eb50728849bca4fc93fe7fb6999c3d7da696d1d1
https://github.com/novifinancial/opaque-ke/commit/eb50728849bca4fc93fe7fb6999c3d7da696d1d1
https://github.com/novifinancial/opaque-ke/commit/f39f30727000b61930e69d191b220d836e03c626
https://github.com/novifinancial/opaque-ke/commit/6538ee30e118cfc99c1f5bff6d2c151e2eaffd2d

	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Strategic Recommendations
	Additional Content

	Table of Findings
	Finding Details
	Finding Field Definitions
	OPAQUE Draft 03 Requirements Review
	Other Notes

	Client Enumeration Attacks
	Details
	Recommendation
	Client Response
	Re-test Results

	OPAQUE RFC Comments
	Updates and Patches After v0.5.0
	Updates and Patches in v1.2.0

