
Version v1.4.2

OWASP Mobile Application Security Verification Standard

Version v1.4.2 January 20, 2022

OWASP Mobile Application Security Verification Standard v1.4.2

Contents

Foreword 5

About the Standard 7
Copyright and License . 7
Acknowledgements . 8

The Mobile Application Security Verification Standard 10
Mobile AppSec Model . 10

Assessment and Certification 15
OWASP’s Stance on MASVS Certifications and Trust Marks 15
Guidance for Certifying Mobile Apps . 15
Other Uses . 16

V1: Architecture, Design and Threat Modeling Requirements 18
Control Objective . 18
Security Verification Requirements . 18
References . 20

V2: Data Storage and Privacy Requirements 21
Control Objective . 21
Security Verification Requirements . 22
References . 23

V3: Cryptography Requirements 25
Control Objective . 25
Security Verification Requirements . 25
References . 26

V4: Authentication and Session Management Requirements 27
Control Objective . 27
Security Verification Requirements . 27
References . 28

V5: Network Communication Requirements 30
Control Objective . 30
Security Verification Requirements . 30
References . 31

V6: Platform Interaction Requirements 32
Control Objective . 32
Security Verification Requirements . 32

3

OWASP Mobile Application Security Verification Standard v1.4.2

References . 33

V7: Code Quality and Build Setting Requirements 35
Control Objective . 35
Security Verification Requirements . 35
References . 36

V8: Resilience Requirements 37
Control Objective . 37
References . 40

Appendix A: Glossary 41

Appendix B: References 44

Changelog 45
V1.3.1 and newer . 45
V1.3 - 13 May 2021 . 45
V1.2 - 7 March 2020 - International Release 45
V1.2-RC - 5 October 2019 - Pre-release (English only) 46
V1.1.4 - 4 July 2019 - Summit edition . 46
V1.1.3 - 9 January 2019 - Small fixes . 47
V1.1.2 - 3 January 2019 - Sponsorship and internationalization 47
V1.1.0 - 14 July 2018 . 47
V1.0 12 - January 2018 . 47

4

OWASP Mobile Application Security Verification Standard v1.4.2

Foreword

Technological revolutions can happen quickly. Less than a decade ago, smartphones were
clunky devices with little keyboards - expensive playthings for tech-savvy business users.
Today, smartphones are an essential part of our lives. We’ve come to rely on them for
information, navigation and communication, and they are ubiquitous both in business
and in our social lives.

Every new technology introduces new security risks, and keeping up with those changes
is one of the main challenges the security industry faces. The defensive side is always
a few steps behind. For example, the default reflex for many was to apply old ways
of doing things: Smartphones are like small computers, and mobile apps are just like
classic software, so surely the security requirements are similar? But it doesn’t work like
that. Smartphone operating systems are different from Desktop operating systems, and
mobile apps are different from web apps. For example, the classical method of signature-
based virus scanning doesn’t make sense in modern mobile OS environments: Not only
is it incompatible with the mobile app distribution model, it’s also technically impossible
due to sandboxing restrictions. Also, some vulnerability classes, such as buffer overflows
and XSS issues, are less relevant in the context of run-of-the-mill mobile apps than in, say,
Desktop apps and web applications (exceptions apply).

Over time, our industry has gotten a better grip on the mobile threat landscape. As it
turns out, mobile security is all about data protection: Apps store our personal informa-
tion, pictures, recordings, notes, account data, business information, location and much
more. They act as clients that connect us to services we use on a daily basis, and as
communications hubs that processes each and every message we exchange with others.
Compromise a person’s smartphone and you get unfiltered access to that person’s life.
When we consider that mobile devices are more readily lost or stolen and mobile malware
is on the rise, the need for data protection becomes even more apparent.

A security standard for mobile apps must therefore focus on how mobile apps handle,
store and protect sensitive information. Even though modern mobile operating systems
like iOS and Android offer good APIs for secure data storage and communication, those
have to be implemented and used correctly in order to be effective. Data storage, inter-
app communication, proper usage of cryptographic APIs and secure network communi-
cation are only some of the aspects that require careful consideration.

An important question in need of industry consensus is how far exactly one should go
in protecting the confidentiality and integrity of data. For example, most of us would
agree that a mobile app should verify the server certificate in a TLS exchange. But what
about SSL certificate pinning? Does not doing it result in a vulnerability? Should this be
a requirement if an app handles sensitive data, or is it maybe even counter-productive?
Do we need to encrypt data stored in SQLite databases, even though the OS sandboxes
the app? What is appropriate for one app might be unrealistic for another. The MASVS is

5

OWASP Mobile Application Security Verification Standard v1.4.2

an attempt to standardize these requirements using verification levels that fit different
threat scenarios.

Furthermore, the appearance of root malware and remote administration tools has cre-
ated awareness of the fact that mobile operating systems themselves have exploitable
flaws, so containerization strategies are increasingly used to afford additional protection
to sensitive data and prevent client-side tampering. This is where things get complicated.
Hardware- backed security features and OS-level containerization solutions, such as An-
droid for Work and Samsung Knox, do exist, but they aren’t consistently available across
different devices. As a band aid, it is possible to implement software-based protection
measures - but unfortunately, there are no standards or testing processes for verifying
these kinds of protections.

As a result, mobile app security testing reports are all over the place: For example, some
testers report a lack of obfuscation or root detection in an Android app as “security flaw”.
On the other hand, measures like string encryption, debugger detection or control flow
obfuscation aren’t considered mandatory. However, this binary way of looking at things
doesn’t make sense because resiliency is not a binary proposition: It depends on the
particular client-side threats one aims to defend against. Software protections are not
useless, but they can ultimately be bypassed, so they must never be used as a replace-
ment for security controls.

The overall goal of the MASVS is to offer a baseline for mobile application security (MASVS-
L1), while also allowing for the inclusion of defense-in-depth measures (MASVS-L2) and
protections against client-side threats (MASVS-R). The MASVS is meant to achieve the
following:

• Provide requirements for software architects and developers seeking to develop se-
cure mobile applications;

• Offer an industry standard that can be tested against in mobile app security reviews;
• Clarify the role of software protection mechanisms in mobile security and provide
requirements to verify their effectiveness;

• Provide specific recommendations as to what level of security is recommended for
different use-cases.

We are aware that 100% industry consensus is impossible to achieve. Nevertheless, we
hope that the MASVS is useful in providing guidance throughout all phases of mobile app
development and testing. As an open source standard, the MASVS will evolve over time,
and we welcome any contributions and suggestions.

By Bernhard Mueller

6

OWASP Mobile Application Security Verification Standard v1.4.2

About the Standard

Welcome to the Mobile Application Security Verification Standard (MASVS). The MASVS is
a community effort to establish a framework of security requirements needed to design,
develop and test secure mobile apps on iOS and Android.

The MASVS is a culmination of community effort and industry feedback. We expect this
standard to evolve over time and welcome feedback from the community.

The best way to get in contact with us is via the OWASP Mobile Project Slack channel:
https://owasp.slack.com/messages/project-mobile_omtg/details/ .

Accounts can be created at the following URL: https://owasp.slack.com/join/shared_invit
e/zt-g398htpy-AZ40HOM1WUOZguJKbblqkw#/.

Copyright and License

Copyright © 2021 The OWASP Foundation. This work is licensed under a Creative Com-
mons Attribution-ShareAlike 4.0 International License. For any reuse or distribution, you
must make clear to others the license terms of this work.

7

https://owasp.slack.com/messages/project-mobile_omtg/details/
https://owasp.slack.com/join/shared_invite/zt-g398htpy-AZ40HOM1WUOZguJKbblqkw#/
https://owasp.slack.com/join/shared_invite/zt-g398htpy-AZ40HOM1WUOZguJKbblqkw#/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

OWASP Mobile Application Security Verification Standard v1.4.2

Acknowledgements

Project Lead Lead
Author

Contributors and Reviewers

Sven Schleier and
Carlos Holguera

Bernhard
Mueller,
Sven
Schleier,
Jeroen
Willem-
sen and
Carlos
Holguera

Alexander Antukh, Mesheryakov Aleksey, Elderov Ali,
Bachevsky Artem, Jeroen Beckers, Jon-Anthoney de
Boer, Damien Clochard, Ben Cheney, Will Chilcutt,
Stephen Corbiaux, Manuel Delgado, Ratchenko
Denis, Ryan Dewhurst, @empty_jack, Ben Gardiner,
Anton Glezman, Josh Grossman, Sjoerd Langkemper,
Vinícius Henrique Marangoni, Martin Marsicano,
Roberto Martelloni, @PierrickV, Julia Potapenko,
Andrew Orobator, Mehrad Rafii, Javier Ruiz, Abhinav
Sejpal, Stefaan Seys, Yogesh Sharma, Prabhant
Singh, Nikhil Soni, Anant Shrivastava, Francesco
Stillavato, Abdessamad Temmar, Pauchard Thomas,
Lukasz Wierzbicki

Language Translators & Reviewers

Brazilian
Portuguese

Mateus Polastro, Humberto Junior, Rodrigo Araujo, Maurício Ariza,
Fernando Galves

Chinese
(Traditonal)

Peter Chi, Lex Chien, Henry Hu, Leo Wang

Chinese
(Simplified)

Bob Peng, Harold Zang, Jack S

French Romuald Szkudlarek, Abderrahmane Aftahi, Christian Dong (Review)

German Rocco Gränitz, Sven Schleier (Review)

Hindi Mukesh Sharma, Ritesh Kumar, Kunwar Atul Singh, Parag Dave,
Devendra Kumar Sinha, Vikrant Shah

Japanese Koki Takeyama, Riotaro Okada (Review)

Korean Youngjae Jeon, Jeongwon Cho, Jiyou Han, Jiyeon Sung

8

OWASP Mobile Application Security Verification Standard v1.4.2

Language Translators & Reviewers

Persian Hamed Salimian, Ramin Atefinia, Dorna Azhirak, Bardiya Akbari,
Mahsa Omidvar, Alireza Mazhari, Milad Khoshdel

Portuguese Ana Filipa Mota, Fernando Nogueira, Filipa Gomes, Luis Fontes, Sónia
Dias

Russian Gall Maxim, Eugen Martynov, Chelnokov Vladislav (Review), Oprya
Egor (Review), Tereshin Dmitry (Review)

Spanish Martin Marsicano, Carlos Holguera

This document started as a fork of the OWASP Application Security Verification Standard
written by Jim Manico.

Donators

While both the MASVS and the MSTG are created and maintained by the community on
a voluntary basis, sometimes a little bit of outside help is required. We therefore thank
our donators for providing the funds to be able to hire technical editors. Note that their
donation does not influence the content of the MASVS or MSTG in any way. The Donation
Packages are described on the OWASP Project Wiki.

Other Donators

We would like to thank everybody that bought the book from Leanpub and sponsored us
that way.

9

https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide#tab=Sponsorship_Packages
https://leanpub.com/mobile-security-testing-guide

OWASP Mobile Application Security Verification Standard v1.4.2

The Mobile Application Security Verification
Standard

The MASVS can be used to establish a level of confidence in the security of mobile apps.
The requirements were developed with the following objectives in mind:

• Use as a metric - To provide a security standard against which existing mobile apps
can be compared by developers and application owners;

• Use as guidance - To provide guidance during all phases of mobile app development
and testing;

• Use during procurement - To provide a baseline for mobile app security verification.

Mobile AppSec Model

The MASVS defines two security verification levels (MASVS-L1 and MASVS-L2), as well
as a set of reverse engineering resiliency requirements (MASVS-R). MASVS-L1 contains
generic security requirements that are recommended for all mobile apps, while MASVS-
L2 should be applied to apps handling highly sensitive data. MASVS-R covers additional
protective controls that can be applied if preventing client-side threats is a design goal.

Fulfilling the requirements in MASVS-L1 results in a secure app that follows security best
practices and doesn’t suffer from common vulnerabilities. MASVS-L2 adds additional
defense-in-depth controls such as SSL pinning, resulting in an app that is resilient against
more sophisticated attacks - assuming the security controls of the mobile operating sys-
tem are intact and the end user is not viewed as a potential adversary. Fulfilling all, or
subsets of, the software protection requirements in MASVS-R helps impede specific client-
side threats where the end user is malicious and/or the mobile OS is compromised.

I: Although we recommend implementing MASVS-L1 controls in every app, im-
plementing a control or not should ultimately be a risk-based decision, which
is taken/communicated with the business owners.

II: Note that the software protection controls listed in MASVS-R and described
in the OWASP Mobile Security Testing Guide can ultimately be bypassed and
must never be used as a replacement for security controls. Instead, they are
intended to add additional threat-specific, protective controls to apps that also
fulfill the MASVS requirements in MASVS-L1 or MASVS-L2.

10

OWASP Mobile Application Security Verification Standard v1.4.2

Document Structure

The first part of the MASVS contains a description of the security model and available
verification levels, followed by recommendations on how to use the standard in practice.
The detailed security requirements, along with a mapping to the verification levels, are
listed in the second part. The requirements have been grouped into eight categories
(V1 to V8) based on technical objective / scope. The following nomenclature is used
throughout the MASVS and MSTG:

• Requirement category: MASVS-Vx, e.g. MASVS-V2: Data Storage and Privacy
• Requirement: MASVS-Vx.y, e.g. MASVS-V2.2: “No sensitive data is written to appli-
cation logs.”

Verification Levels in Detail

MASVS-L1: Standard Security

A mobile app that achieves MASVS-L1 adheres to mobile application security best prac-
tices. It fulfills basic requirements in terms of code quality, handling of sensitive data,
and interaction with the mobile environment. A testing process must be in place to verify
the security controls. This level is appropriate for all mobile applications.

MASVS-L2: Defense-in-Depth

MASVS-L2 introduces advanced security controls that go beyond the standard require-
ments. To fulfill MASVS-L2, a threat model must exist, and security must be an integral
part of the app’s architecture and design. Based on the threat model, the right MASVS-L2

11

OWASP Mobile Application Security Verification Standard v1.4.2

controls should have been selected and implemented successfully. This level is appropri-
ate for apps that handle highly sensitive data, such as mobile banking apps.

MASVS-R: Resiliency Against Reverse Engineering and Tampering

The app has state-of-the-art security, and is also resilient against specific, clearly defined
client-side attacks, such as tampering, modding, or reverse engineering to extract sensi-
tive code or data. Such an app either leverages hardware security features or sufficiently
strong and verifiable software protection techniques. MASVS-R is applicable to apps that
handle highly sensitive data and may serve as a means of protecting intellectual property
or tamper-proofing an app.

Recommended Use

Apps can be verified against MASVS L1 or L2 based on prior risk assessment and overall
level of security required. L1 is applicable to all mobile apps, while L2 is generally recom-
mended for apps that handle more sensitive data and/or functionality. MASVS-R (or parts
of it) can be applied to verify resiliency against specific threats, such as repackaging or
extraction of sensitive data, in addition to proper security verification.

In summary, the following verification types are available:

• MASVS-L1
• MASVS-L1+R
• MASVS-L2
• MASVS-L2+R

The different combinations reflect different grades of security and resiliency. The goal is
to allow for flexibility: For example, a mobile game might not warrant adding MASVS-L2
security controls such as 2-factor authentication for usability reasons, but have a strong
business need for tamper prevention.

Which Verification Type to Choose

Implementing the requirements of MASVS L2 increases security, while at the same time
increasing cost of development and potentially worsening the end user experience (the
classical trade-off). In general, L2 should be used for apps whenever it makes sense
from a risk vs. cost perspective (i.e., where the potential loss caused by a compromise
of confidentiality or integrity is higher than the cost incurred by the additional security
controls). A risk assessment should be the first step before applying the MASVS.

12

OWASP Mobile Application Security Verification Standard v1.4.2

Examples

MASVS-L1

• All mobile apps. MASVS-L1 lists security best practices that can be followed with
a reasonable impact on development cost and user experience. Apply the require-
ments in MASVS-L1 for any app that don’t qualify for one of the higher levels.

MASVS-L2

• Health-Care Industry: Mobile apps that store personally identifiable information that
can be used for identity theft, fraudulent payments, or a variety of fraud schemes.
For the US healthcare sector, compliance considerations include the Health Insur-
ance Portability and Accountability Act (HIPAA) Privacy, Security, Breach Notification
Rules and Patient Safety Rule.

• Financial Industry: Apps that enable access to highly sensitive information like credit
card numbers, personal information, or allow the user to move funds. These apps
warrant additional security controls to prevent fraud. Financial apps need to ensure
compliance to the Payment Card Industry Data Security Standard (PCI DSS), Gramm
Leech Bliley Act and Sarbanes-Oxley Act (SOX).

MASVS L1+R

• Mobile apps where Intellectual Property (IP) protection is a business goal. The re-
siliency controls listed in MASVS-R can be used to increase the effort needed to
obtain the original source code and to impede tampering / cracking.

• Gaming Industry: Games with an essential need to prevent modding and cheating,
such as competitive online games. Cheating is an important issue in online games,
as a large amount of cheaters leads to a disgruntled player base and can ultimately
cause a game to fail. MASVS-R provides basic anti-tampering controls to help in-
crease the effort for cheaters.

MASVS L2+R

• Financial Industry: Online banking apps that allow the user to move funds, where
techniques such as code injection and instrumentation on compromised devices
pose a risk. In this case, controls from MASVS-R can be used to impede tampering,
raising the bar for malware authors.

• All mobile apps that, by design, need to store sensitive data on the mobile device,
and at the same time must support a wide range of devices and operating system
versions. In this case, resiliency controls can be used as a defense-in-depth measure
to increase the effort for attackers aiming to extract the sensitive data.

• Apps with in-app purchases should ideally use server-side and MASVS-L2 controls to
protect paid content. However, there may be cases where there is no possibility to

13

OWASP Mobile Application Security Verification Standard v1.4.2

use server-side protection. In those cases, MASVS-R controls should be additionally
applied in order to increase the reversing and/or tampering effort.

14

OWASP Mobile Application Security Verification Standard v1.4.2

Assessment and Certification

OWASP’s Stance on MASVS Certifications and Trust Marks

OWASP, as a vendor-neutral not-for-profit organization, does not certify any vendors, ver-
ifiers or software.

All such assurance assertions, trust marks, or certifications are not officially vetted, reg-
istered, or certified by OWASP, so an organization relying upon such a view needs to be
cautious of the trust placed in any third party or trust mark claiming (M)ASVS certifica-
tion.

This should not inhibit organizations from offering such assurance services, as long as
they do not claim official OWASP certification.

Guidance for Certifying Mobile Apps

The recommended way of verifying compliance of a mobile app with the MASVS is by
performing an “open book” review, meaning that the testers are granted access to key
resources such as architects and developers of the app, project documentation, source
code, and authenticated access to endpoints, including access to at least one user ac-
count for each role.

It is important to note that the MASVS only covers security of the (client-side) mobile app
and the network communication between the app and its remote endpoint(s), as well as
a few basic and generic requirements related to user authentication and session man-
agement. It does not contain specific requirements for the remote services (e.g. web
services) associated with the app other than a limited set of generic requirements per-
taining to authorization, authentication, control verification, and session management.
However, MASVS V1 specifies that remote services must be covered by the overall threat
model, and be verified against appropriate standards, such as the OWASP ASVS.

A certifying organization must include in any report the scope of the verification (partic-
ularly if a key component is out of scope), a summary of verification findings, including
passed and failed tests, with clear indications of how to resolve the failed tests. Keeping
detailed work papers, screenshots or movies, scripts to reliably and repeatedly exploit an
issue, and electronic records of testing, such as intercepting proxy logs and associated
notes such as a cleanup list, is considered standard industry practice. It is not sufficient
to simply run a tool and report on the failures; this does not provide sufficient evidence
that all issues at a certifying level have been tested and tested thoroughly. In case of dis-
pute, there should be sufficient supportive evidence to demonstrate that every verified
requirement has indeed been tested.

15

OWASP Mobile Application Security Verification Standard v1.4.2

Using the OWASP Mobile Security Testing Guide (MSTG)

The OWASP MSTG is a manual for testing the security of mobile apps. It describes the
technical processes for verifying the requirements listed in the MASVS. TheMSTG includes
a list of test cases, each of which map to a requirement in the MASVS. While the MASVS
requirements are high-level and generic, the MSTG provides in-depth recommendations
and testing procedures on a per-mobile-OS basis.

The Role of Automated Security Testing Tools

The use of source code scanners and black-box testing tools is encouraged in order to
increase efficiency whenever possible. It is however not possible to complete MASVS ver-
ification using automated tools alone: Every mobile app is different, and understanding
the overall architecture, business logic, and technical pitfalls of the specific technologies
and frameworks being used, is a mandatory requirement to verify security of the app.

Other Uses

As Detailed Security Architecture Guidance

One of the more common uses for the Mobile Application Security Verification Standard
is as a resource for security architects. The two major security architecture frameworks,
SABSA or TOGAF, are missing a great deal of information that is necessary to complete
mobile application security architecture reviews. MASVS can be used to fill in those gaps
by allowing security architects to choose better controls for issues common to mobile
apps.

As a Replacement for Off-the-shelf Secure Coding Checklists

Many organizations can benefit from adopting the MASVS, by choosing one of the two
levels, or by forking MASVS and changing what is required for each application’s risk
level in a domain-specific way. We encourage this type of forking as long as traceability
is maintained, so that if an app has passed requirement 4.1, this means the same thing
for forked copies as the standard evolves.

As a Basis for Security Testing Methodologies

A good mobile app security testing methodology should cover all requirements listed in
the MASVS. The OWASP Mobile Security Testing Guide (MSTG) describes black-box and
white-box test cases for each verification requirement.

16

OWASP Mobile Application Security Verification Standard v1.4.2

As a Guide for Automated Unit and Integration Tests

The MASVS is designed to be highly testable, with the sole exception of architectural
requirements. Automated unit, integration and acceptance testing based on the MASVS
requirements can be integrated in the continuous development lifecycle. This not only
increases developer security awareness, but also improves the overall quality of the re-
sulting apps, and reduces the amount of findings during security testing in the pre-release
phase.

For Secure Development Training

MASVS can also be used to define characteristics of secure mobile apps. Many “secure
coding” courses are simply ethical hacking courses with a light smear of coding tips. This
does not help developers. Instead, secure development courses can use the MASVS, with
a strong focus on the proactive controls documented in the MASVS, rather than e.g. the
Top 10 code security issues.

17

OWASP Mobile Application Security Verification Standard v1.4.2

V1: Architecture, Design and Threat Modeling
Requirements

Control Objective

In a perfect world, security would be considered throughout all phases of development. In
reality however, security is often only a consideration at a late stage in the SDLC. Besides
the technical controls, the MASVS requires processes to be in place that ensure that the
security has been explicitly addressed when planning the architecture of the mobile app,
and that the functional and security roles of all components are known. Sincemostmobile
applications act as clients to remote services, it must be ensured that appropriate security
standards are also applied to those services - testing the mobile app in isolation is not
sufficient.

The category “V1” lists requirements pertaining to architecture and design of the app.
As such, this is the only category that does not map to technical test cases in the OWASP
Mobile Testing Guide. To cover topics such as threat modelling, secure SDLC or key man-
agement, users of the MASVS should consult the respective OWASP projects and/or other
standards such as the ones linked below.

Security Verification Requirements

The requirements for MASVS-L1 and MASVS-L2 are listed below.

MSTG-ID Description L1 L2

1.1 MSTG-ARCH-1 All app components are identified and known to
be needed.

x x

1.2 MSTG-ARCH-2 Security controls are never enforced only on the
client side, but on the respective remote
endpoints.

x x

1.3 MSTG-ARCH-3 A high-level architecture for the mobile app and
all connected remote services has been defined
and security has been addressed in that
architecture.

x x

1.4 MSTG-ARCH-4 Data considered sensitive in the context of the
mobile app is clearly identified.

x x

18

OWASP Mobile Application Security Verification Standard v1.4.2

MSTG-ID Description L1 L2

1.5 MSTG-ARCH-5 All app components are defined in terms of the
business functions and/or security functions
they provide.

x

1.6 MSTG-ARCH-6 A threat model for the mobile app and the
associated remote services has been produced
that identifies potential threats and
countermeasures.

x

1.7 MSTG-ARCH-7 All security controls have a centralized
implementation.

x

1.8 MSTG-ARCH-8 There is an explicit policy for how cryptographic
keys (if any) are managed, and the lifecycle of
cryptographic keys is enforced. Ideally, follow a
key management standard such as NIST SP
800-57.

x

1.9 MSTG-ARCH-9 A mechanism for enforcing updates of the
mobile app exists.

x

1.10 MSTG-ARCH-10 Security is addressed within all parts of the
software development lifecycle.

x

1.11 MSTG-ARCH-11 A responsible disclosure policy is in place and
effectively applied.

x

1.12 MSTG-ARCH-12 The app should comply with privacy laws and
regulations.

x x

19

OWASP Mobile Application Security Verification Standard v1.4.2

References

For more information, see also:

• OWASP Mobile Top 10: M10 (Extraneous Functionality) - https://owasp.org/www-
project-mobile-top-10/2016-risks/m10-extraneous-functionality

• OWASP Threat modelling - https://owasp.org/www-community/Application_Threa
t_Modeling

• OWASP Secure SDLC Cheat Sheet - https://github.com/OWASP/CheatSheetSeries/bl
ob/master/cheatsheets_excluded/Secure_SDLC_Cheat_Sheet.md

• Microsoft SDL - https://www.microsoft.com/en-us/sdl/
• NIST SP 800-57 - https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-
5/final

• security.txt - https://securitytxt.org/

20

https://owasp.org/www-project-mobile-top-10/2016-risks/m10-extraneous-functionality
https://owasp.org/www-project-mobile-top-10/2016-risks/m10-extraneous-functionality
https://owasp.org/www-community/Application_Threat_Modeling
https://owasp.org/www-community/Application_Threat_Modeling
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets_excluded/Secure_SDLC_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets_excluded/Secure_SDLC_Cheat_Sheet.md
https://www.microsoft.com/en-us/sdl/
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final
https://securitytxt.org/

OWASP Mobile Application Security Verification Standard v1.4.2

V2: Data Storage and Privacy Requirements

Control Objective

The protection of sensitive data, such as user credentials and private information, is
a key focus in mobile security. Firstly, sensitive data can be unintentionally exposed to
other apps running on the same device if operating system mechanisms like IPC are used
improperly. Datamay also unintentionally leak to cloud storage, backups, or the keyboard
cache. Additionally, mobile devices can be lost or stolen more easily compared to other
types of devices, so an adversary gaining physical access is a more likely scenario. In
that case, additional protections can be implemented to make retrieving the sensitive
data more difficult.

Note that, as the MASVS is app-centric, it does not cover device-level policies such as
those enforced by MDM solutions. We encourage the use of such policies in an Enterprise
context to further enhance data security.

Definition of Sensitive Data

Sensitive data in the context of the MASVS pertains to both user credentials and any
other data considered sensitive in the particular context, such as:

• Personally identifiable information (PII) that can be abused for identity theft: Social
security numbers, credit card numbers, bank account numbers, health information;

• Highly sensitive data that would lead to reputational harm and/or financial costs
if compromised: Contractual information, information covered by non-disclosure
agreements, management information;

• Any data that must be protected by law or for compliance reasons.

21

OWASP Mobile Application Security Verification Standard v1.4.2

Security Verification Requirements

The vast majority of data disclosure issues can be prevented by following simple rules.
Most of the controls listed in this chapter are mandatory for all verification levels.

MSTG-ID Description L1 L2

2.1 MSTG-STORAGE-1 System credential storage facilities need to be
used to store sensitive data, such as PII, user
credentials or cryptographic keys.

x x

2.2 MSTG-STORAGE-2 No sensitive data should be stored outside of
the app container or system credential storage
facilities.

x x

2.3 MSTG-STORAGE-3 No sensitive data is written to application logs. x x

2.4 MSTG-STORAGE-4 No sensitive data is shared with third parties
unless it is a necessary part of the architecture.

x x

2.5 MSTG-STORAGE-5 The keyboard cache is disabled on text inputs
that process sensitive data.

x x

2.6 MSTG-STORAGE-6 No sensitive data is exposed via IPC
mechanisms.

x x

2.7 MSTG-STORAGE-7 No sensitive data, such as passwords or pins, is
exposed through the user interface.

x x

2.8 MSTG-STORAGE-8 No sensitive data is included in backups
generated by the mobile operating system.

x

2.9 MSTG-STORAGE-9 The app removes sensitive data from views
when moved to the background.

x

2.10 MSTG-STORAGE-10 The app does not hold sensitive data in memory
longer than necessary, and memory is cleared
explicitly after use.

x

2.11 MSTG-STORAGE-11 The app enforces a minimum
device-access-security policy, such as requiring
the user to set a device passcode.

x

22

OWASP Mobile Application Security Verification Standard v1.4.2

MSTG-ID Description L1 L2

2.12 MSTG-STORAGE-12 The app educates the user about the types of
personally identifiable information processed,
as well as security best practices the user
should follow in using the app.

x x

2.13 MSTG-STORAGE-13 No sensitive data should be stored locally on the
mobile device. Instead, data should be
retrieved from a remote endpoint when needed
and only be kept in memory.

x

2.14 MSTG-STORAGE-14 If sensitive data is still required to be stored
locally, it should be encrypted using a key
derived from hardware backed storage which
requires authentication.

x

2.15 MSTG-STORAGE-15 The app’s local storage should be wiped after an
excessive number of failed authentication
attempts.

x

References

The OWASP Mobile Security Testing Guide provides detailed instructions for verifying the
requirements listed in this section.

• Android: Testing Data Storage - https://github.com/OWASP/owasp-mstg/blob/mast
er/Document/0x05d-Testing-Data-Storage.md

• iOS: Testing Data Storage - https://github.com/OWASP/owasp-mstg/blob/master/D
ocument/0x06d-Testing-Data-Storage.md

For more information, see also:

• OWASP Mobile Top 10: M1 (Improper Platform Usage) - https://owasp.org/www-
project-mobile-top-10/2016-risks/m1-improper-platform-usage

• OWASP Mobile Top 10: M2 (Insecure Data Storage) - https://owasp.org/www-project-
mobile-top-10/2016-risks/m2-insecure-data-storage

• CWE 117 (Improper Output Neutralization for Logs) - https://cwe.mitre.org/data/def
initions/117.html

• CWE 200 (Information Exposure) - https://cwe.mitre.org/data/definitions/200.html
• CWE 276 (Incorrect Default Permissions) - https://cwe.mitre.org/data/definitions/2
76.html

23

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05d-Testing-Data-Storage.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05d-Testing-Data-Storage.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06d-Testing-Data-Storage.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06d-Testing-Data-Storage.md
https://owasp.org/www-project-mobile-top-10/2016-risks/m1-improper-platform-usage
https://owasp.org/www-project-mobile-top-10/2016-risks/m1-improper-platform-usage
https://owasp.org/www-project-mobile-top-10/2016-risks/m2-insecure-data-storage
https://owasp.org/www-project-mobile-top-10/2016-risks/m2-insecure-data-storage
https://cwe.mitre.org/data/definitions/117.html
https://cwe.mitre.org/data/definitions/117.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/276.html
https://cwe.mitre.org/data/definitions/276.html

OWASP Mobile Application Security Verification Standard v1.4.2

• CWE 311 (Missing Encryption of Sensitive Data) - https://cwe.mitre.org/data/definit
ions/311.html

• CWE 312 (Cleartext Storage of Sensitive Information) - https://cwe.mitre.org/data/d
efinitions/312.html

• CWE 316 (Cleartext Storage of Sensitive Information in Memory) - https://cwe.mitr
e.org/data/definitions/316.html

• CWE 359 (Exposure of Private Information (‘Privacy Violation’)) - https://cwe.mitre.
org/data/definitions/359.html

• CWE 522 (Insufficiently Protected Credentials) - https://cwe.mitre.org/data/definitio
ns/522.html

• CWE 524 (Information Exposure Through Caching) - https://cwe.mitre.org/data/def
initions/524.html

• CWE 530 (Exposure of Backup File to an Unauthorized Control Sphere) - https://cwe.
mitre.org/data/definitions/530.html

• CWE 532 (Information Exposure Through Log Files) - https://cwe.mitre.org/data/def
initions/532.html

• CWE 534 (Information Exposure Through Debug Log Files) - https://cwe.mitre.org/
data/definitions/534.html

• CWE 634 (Weaknesses that Affect System Processes) - https://cwe.mitre.org/data/d
efinitions/634.html

• CWE 798 (Use of Hard-coded Credentials) - https://cwe.mitre.org/data/definitions/7
98.html

• CWE 921 (Storage of Sensitive Data in a Mechanism without Access Control) - https:
//cwe.mitre.org/data/definitions/921.html

• CWE 922 (Insecure Storage of Sensitive Information) - https://cwe.mitre.org/data/d
efinitions/922.html

24

https://cwe.mitre.org/data/definitions/311.html
https://cwe.mitre.org/data/definitions/311.html
https://cwe.mitre.org/data/definitions/312.html
https://cwe.mitre.org/data/definitions/312.html
https://cwe.mitre.org/data/definitions/316.html
https://cwe.mitre.org/data/definitions/316.html
https://cwe.mitre.org/data/definitions/359.html
https://cwe.mitre.org/data/definitions/359.html
https://cwe.mitre.org/data/definitions/522.html
https://cwe.mitre.org/data/definitions/522.html
https://cwe.mitre.org/data/definitions/524.html
https://cwe.mitre.org/data/definitions/524.html
https://cwe.mitre.org/data/definitions/530.html
https://cwe.mitre.org/data/definitions/530.html
https://cwe.mitre.org/data/definitions/532.html
https://cwe.mitre.org/data/definitions/532.html
https://cwe.mitre.org/data/definitions/534.html
https://cwe.mitre.org/data/definitions/534.html
https://cwe.mitre.org/data/definitions/634.html
https://cwe.mitre.org/data/definitions/634.html
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/921.html
https://cwe.mitre.org/data/definitions/921.html
https://cwe.mitre.org/data/definitions/922.html
https://cwe.mitre.org/data/definitions/922.html

OWASP Mobile Application Security Verification Standard v1.4.2

V3: Cryptography Requirements

Control Objective

Cryptography is an essential ingredient when it comes to protecting data stored on a
mobile device. It is also a category where things can go horribly wrong, especially when
standard conventions are not followed. The purpose of the controls in this chapter is to
ensure that the verified application uses cryptography according to industry best prac-
tices, including:

• Use of proven cryptographic libraries;
• Proper choice and configuration of cryptographic primitives;
• A suitable random number generator wherever randomness is required.

Security Verification Requirements

MSTG-ID Description L1 L2

3.1 MSTG-CRYPTO-1 The app does not rely on symmetric
cryptography with hardcoded keys as a sole
method of encryption.

x x

3.2 MSTG-CRYPTO-2 The app uses proven implementations of
cryptographic primitives.

x x

3.3 MSTG-CRYPTO-3 The app uses cryptographic primitives that are
appropriate for the particular use-case,
configured with parameters that adhere to
industry best practices.

x x

3.4 MSTG-CRYPTO-4 The app does not use cryptographic protocols or
algorithms that are widely considered
deprecated for security purposes.

x x

3.5 MSTG-CRYPTO-5 The app doesn’t re-use the same cryptographic
key for multiple purposes.

x x

3.6 MSTG-CRYPTO-6 All random values are generated using a
sufficiently secure random number generator.

x x

25

OWASP Mobile Application Security Verification Standard v1.4.2

References

The OWASP Mobile Security Testing Guide provides detailed instructions for verifying the
requirements listed in this section.

• Android: Testing Cryptography - https://github.com/OWASP/owasp-mstg/blob/mast
er/Document/0x05e-Testing-Cryptography.md

• iOS: Testing Cryptography - https://github.com/OWASP/owasp-mstg/blob/master/D
ocument/0x06e-Testing-Cryptography.md

For more information, see also:

• OWASP Mobile Top 10: M5 (Insufficient Cryptography) - https://owasp.org/www-
project-mobile-top-10/2016-risks/m5-insufficient-cryptography

• CWE 310 (Cryptographic Issues) - https://cwe.mitre.org/data/definitions/310.html
• CWE 321 (Use of Hard-coded Cryptographic Key) - https://cwe.mitre.org/data/defin
itions/321.html

• CWE 326 (Inadequate Encryption Strength) - https://cwe.mitre.org/data/definitions
/326.html

• CWE 327 (Use of a Broken or Risky Cryptographic Algorithm) - https://cwe.mitre.or
g/data/definitions/327.html

• CWE 329 (Not Using a Random IV with CBC Mode) - https://cwe.mitre.org/data/def
initions/329.html

• CWE 330 (Use of Insufficiently Random Values) - https://cwe.mitre.org/data/definit
ions/330.html

• CWE 337 (Predictable Seed in PRNG) - https://cwe.mitre.org/data/definitions/337.h
tml

• CWE 338 (Use of Cryptographically Weak Pseudo Random Number Generator
(PRNG)) - https://cwe.mitre.org/data/definitions/338.html

26

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05e-Testing-Cryptography.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05e-Testing-Cryptography.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06e-Testing-Cryptography.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06e-Testing-Cryptography.md
https://owasp.org/www-project-mobile-top-10/2016-risks/m5-insufficient-cryptography
https://owasp.org/www-project-mobile-top-10/2016-risks/m5-insufficient-cryptography
https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/321.html
https://cwe.mitre.org/data/definitions/321.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/329.html
https://cwe.mitre.org/data/definitions/329.html
https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/337.html
https://cwe.mitre.org/data/definitions/337.html
https://cwe.mitre.org/data/definitions/338.html

OWASP Mobile Application Security Verification Standard v1.4.2

V4: Authentication and Session Management
Requirements

Control Objective

In most cases, users logging into a remote service is an integral part of the overall mobile
app architecture. Even though most of the logic happens at the endpoint, MASVS defines
some basic requirements regarding how user accounts and sessions are to bemanaged.

Security Verification Requirements

MSTG-ID Description L1 L2

4.1 MSTG-AUTH-1 If the app provides users access to a remote
service, some form of authentication, such as
username/password authentication, is
performed at the remote endpoint.

x x

4.2 MSTG-AUTH-2 If stateful session management is used, the
remote endpoint uses randomly generated
session identifiers to authenticate client
requests without sending the user’s credentials.

x x

4.3 MSTG-AUTH-3 If stateless token-based authentication is used,
the server provides a token that has been
signed using a secure algorithm.

x x

4.4 MSTG-AUTH-4 The remote endpoint terminates the existing
session when the user logs out.

x x

4.5 MSTG-AUTH-5 A password policy exists and is enforced at the
remote endpoint.

x x

4.6 MSTG-AUTH-6 The remote endpoint implements a mechanism
to protect against the submission of credentials
an excessive number of times.

x x

4.7 MSTG-AUTH-7 Sessions are invalidated at the remote endpoint
after a predefined period of inactivity and
access tokens expire.

x x

27

OWASP Mobile Application Security Verification Standard v1.4.2

MSTG-ID Description L1 L2

4.8 MSTG-AUTH-8 Biometric authentication, if any, is not
event-bound (i.e. using an API that simply
returns “true” or “false”). Instead, it is based on
unlocking the keychain/keystore.

x

4.9 MSTG-AUTH-9 A second factor of authentication exists at the
remote endpoint and the 2FA requirement is
consistently enforced.

x

4.10 MSTG-AUTH-10 Sensitive transactions require step-up
authentication.

x

4.11 MSTG-AUTH-11 The app informs the user of all sensitive
activities with their account. Users are able to
view a list of devices, view contextual
information (IP address, location, etc.), and to
block specific devices.

x

4.12 MSTG-AUTH-12 Authorization models should be defined and
enforced at the remote endpoint.

x x

References

The OWASP Mobile Security Testing Guide provides detailed instructions for verifying the
requirements listed above.

• General: Authentication and Session Management - https://github.com/OWASP/o
wasp-mstg/blob/master/Document/0x04e-Testing-Authentication-and-Session-
Management.md

• Android: Testing Local Authentication - https://github.com/OWASP/owasp-mstg/blo
b/master/Document/0x05f-Testing-Local-Authentication.md

• iOS: Testing Local Authentication - https://github.com/OWASP/owasp-mstg/blob/ma
ster/Document/0x06f-Testing-Local-Authentication.md

For more information, see also:

• OWASP Mobile Top 10: M4 (Insecure Authentication) - https://owasp.org/www-
project-mobile-top-10/2016-risks/m4-insecure-authentication

• OWASP Mobile Top 10: M6 (Insecure Authorization) - https://owasp.org/www-project-
mobile-top-10/2016-risks/m6-insecure-authorization

28

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x04e-Testing-Authentication-and-Session-Management.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x04e-Testing-Authentication-and-Session-Management.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x04e-Testing-Authentication-and-Session-Management.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05f-Testing-Local-Authentication.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05f-Testing-Local-Authentication.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06f-Testing-Local-Authentication.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06f-Testing-Local-Authentication.md
https://owasp.org/www-project-mobile-top-10/2016-risks/m4-insecure-authentication
https://owasp.org/www-project-mobile-top-10/2016-risks/m4-insecure-authentication
https://owasp.org/www-project-mobile-top-10/2016-risks/m6-insecure-authorization
https://owasp.org/www-project-mobile-top-10/2016-risks/m6-insecure-authorization

OWASP Mobile Application Security Verification Standard v1.4.2

• CWE 287 (Improper Authentication) - https://cwe.mitre.org/data/definitions/287.h
tml

• CWE 307 (Improper Restriction of Excessive Authentication Attempts) - https://cwe.
mitre.org/data/definitions/307.html

• CWE 308 (Use of Single-factor Authentication) - https://cwe.mitre.org/data/definitio
ns/308.html

• CWE 521 (Weak Password Requirements) - https://cwe.mitre.org/data/definitions/5
21.html

• CWE 604 (Use of Client-Side Authentication) - https://cwe.mitre.org/data/definitions
/604.html

• CWE 613 (Insufficient Session Expiration) - https://cwe.mitre.org/data/definitions/6
13.html

29

https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/307.html
https://cwe.mitre.org/data/definitions/307.html
https://cwe.mitre.org/data/definitions/308.html
https://cwe.mitre.org/data/definitions/308.html
https://cwe.mitre.org/data/definitions/521.html
https://cwe.mitre.org/data/definitions/521.html
https://cwe.mitre.org/data/definitions/604.html
https://cwe.mitre.org/data/definitions/604.html
https://cwe.mitre.org/data/definitions/613.html
https://cwe.mitre.org/data/definitions/613.html

OWASP Mobile Application Security Verification Standard v1.4.2

V5: Network Communication Requirements

Control Objective

The purpose of the controls listed in this section is to ensure the confidentiality and in-
tegrity of information exchanged between the mobile app and remote service endpoints.
At the very least, a mobile app must set up a secure, encrypted channel for network
communication using the TLS protocol with appropriate settings. Level 2 lists additional
defense-in-depth measure such as SSL pinning.

Security Verification Requirements

MSTG-ID Description L1 L2

5.1 MSTG-NETWORK-1 Data is encrypted on the network using TLS.
The secure channel is used consistently
throughout the app.

x x

5.2 MSTG-NETWORK-2 The TLS settings are in line with current best
practices, or as close as possible if the mobile
operating system does not support the
recommended standards.

x x

5.3 MSTG-NETWORK-3 The app verifies the X.509 certificate of the
remote endpoint when the secure channel is
established. Only certificates signed by a
trusted CA are accepted.

x x

5.4 MSTG-NETWORK-4 The app either uses its own certificate store, or
pins the endpoint certificate or public key, and
subsequently does not establish connections
with endpoints that offer a different certificate
or key, even if signed by a trusted CA.

x

5.5 MSTG-NETWORK-5 The app doesn’t rely on a single insecure
communication channel (email or SMS) for
critical operations, such as enrollments and
account recovery.

x

5.6 MSTG-NETWORK-6 The app only depends on up-to-date
connectivity and security libraries.

x

30

OWASP Mobile Application Security Verification Standard v1.4.2

References

The OWASP Mobile Security Testing Guide provides detailed instructions for verifying the
requirements listed in this section.

• General: Testing Network Communication - https://github.com/OWASP/owasp-
mstg/blob/master/Document/0x04f-Testing-Network-Communication.md

• Android: Testing Network Communication - https://github.com/OWASP/owasp-
mstg/blob/master/Document/0x05g-Testing-Network-Communication.md

• iOS: Testing Network Communication - https://github.com/OWASP/owasp-mstg/blo
b/master/Document/0x06g-Testing-Network-Communication.md

For more information, see also:

• OWASP Mobile Top 10: M3 (Insecure Communication) - https://owasp.org/www-
project-mobile-top-10/2016-risks/m3-insecure-communication

• CWE 295 (Improper Certificate Validation) - https://cwe.mitre.org/data/definitions/2
95.html

• CWE 296 (Improper Following of a Certificate’s Chain of Trust) - https://cwe.mitre.or
g/data/definitions/296.html

• CWE 297 (Improper Validation of Certificate with Host Mismatch) - https://cwe.mitr
e.org/data/definitions/297.html

• CWE 298 (Improper Validation of Certificate Expiration) - https://cwe.mitre.org/data
/definitions/298.html

• CWE 308 (Use of Single-factor Authentication) - https://cwe.mitre.org/data/definitio
ns/308.html

• CWE 319 (Cleartext Transmission of Sensitive Information) - https://cwe.mitre.org/
data/definitions/319.html

• CWE 326 (Inadequate Encryption Strength) - https://cwe.mitre.org/data/definitions
/326.html

• CWE 327 (Use of a Broken or Risky Cryptographic Algorithm) - https://cwe.mitre.or
g/data/definitions/327.html

• CWE 780 (Use of RSA Algorithm without OAEP) - https://cwe.mitre.org/data/definit
ions/780.html

• CWE 940 (Improper Verification of Source of a Communication Channel) - https:
//cwe.mitre.org/data/definitions/940.html

• CWE 941 (Incorrectly Specified Destination in a Communication Channel) - https:
//cwe.mitre.org/data/definitions/941.html

31

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x04f-Testing-Network-Communication.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x04f-Testing-Network-Communication.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05g-Testing-Network-Communication.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05g-Testing-Network-Communication.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06g-Testing-Network-Communication.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06g-Testing-Network-Communication.md
https://owasp.org/www-project-mobile-top-10/2016-risks/m3-insecure-communication
https://owasp.org/www-project-mobile-top-10/2016-risks/m3-insecure-communication
https://cwe.mitre.org/data/definitions/295.html
https://cwe.mitre.org/data/definitions/295.html
https://cwe.mitre.org/data/definitions/296.html
https://cwe.mitre.org/data/definitions/296.html
https://cwe.mitre.org/data/definitions/297.html
https://cwe.mitre.org/data/definitions/297.html
https://cwe.mitre.org/data/definitions/298.html
https://cwe.mitre.org/data/definitions/298.html
https://cwe.mitre.org/data/definitions/308.html
https://cwe.mitre.org/data/definitions/308.html
https://cwe.mitre.org/data/definitions/319.html
https://cwe.mitre.org/data/definitions/319.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/780.html
https://cwe.mitre.org/data/definitions/780.html
https://cwe.mitre.org/data/definitions/940.html
https://cwe.mitre.org/data/definitions/940.html
https://cwe.mitre.org/data/definitions/941.html
https://cwe.mitre.org/data/definitions/941.html

OWASP Mobile Application Security Verification Standard v1.4.2

V6: Platform Interaction Requirements

Control Objective

The controls in this group ensure that the app uses platform APIs and standard compo-
nents in a secure manner. Additionally, the controls cover communication between apps
(IPC).

Security Verification Requirements

MSTG-ID Description L1 L2

6.1 MSTG-PLATFORM-1 The app only requests the minimum set of
permissions necessary.

x x

6.2 MSTG-PLATFORM-2 All inputs from external sources and the user
are validated and if necessary sanitized. This
includes data received via the UI, IPC
mechanisms such as intents, custom URLs, and
network sources.

x x

6.3 MSTG-PLATFORM-3 The app does not export sensitive functionality
via custom URL schemes, unless these
mechanisms are properly protected.

x x

6.4 MSTG-PLATFORM-4 The app does not export sensitive functionality
through IPC facilities, unless these mechanisms
are properly protected.

x x

6.5 MSTG-PLATFORM-5 JavaScript is disabled in WebViews unless
explicitly required.

x x

6.6 MSTG-PLATFORM-6 WebViews are configured to allow only the
minimum set of protocol handlers required
(ideally, only https is supported). Potentially
dangerous handlers, such as file, tel and app-id,
are disabled.

x x

6.7 MSTG-PLATFORM-7 If native methods of the app are exposed to a
WebView, verify that the WebView only renders
JavaScript contained within the app package.

x x

32

OWASP Mobile Application Security Verification Standard v1.4.2

MSTG-ID Description L1 L2

6.8 MSTG-PLATFORM-8 Object deserialization, if any, is implemented
using safe serialization APIs.

x x

6.9 MSTG-PLATFORM-9 The app protects itself against screen overlay
attacks. (Android only)

x

6.10 MSTG-PLATFORM-10 A WebView’s cache, storage, and loaded
resources (JavaScript, etc.) should be cleared
before the WebView is destroyed.

x

6.11 MSTG-PLATFORM-11 Verify that the app prevents usage of custom
third-party keyboards whenever sensitive data
is entered (iOS only).

x

References

The OWASP Mobile Security Testing Guide provides detailed instructions for verifying the
requirements listed in this section.

• Android: Testing Platform Interaction - https://github.com/OWASP/owasp-mstg/blo
b/master/Document/0x05h-Testing-Platform-Interaction.md

• iOS: Testing Platform Interaction - https://github.com/OWASP/owasp-mstg/blob/ma
ster/Document/0x06h-Testing-Platform-Interaction.md

For more information, see also:

• OWASP Mobile Top 10: M1 (Improper Platform Usage) - https://owasp.org/www-
project-mobile-top-10/2016-risks/m1-improper-platform-usage

• OWASP Mobile Top 10: M7 (Poor Code Quality) - https://owasp.org/www-project-
mobile-top-10/2016-risks/m7-client-code-quality

• CWE 20 (Improper Input Validation) - https://cwe.mitre.org/data/definitions/20.html
• CWE 79 (Improper Neutralization of Input During Web Page Generation) - https:
//cwe.mitre.org/data/definitions/79.html

• CWE 200 (Information Leak / Disclosure) - https://cwe.mitre.org/data/definitions/2
00.html

• CWE 250 (Execution with Unnecessary Privileges) - https://cwe.mitre.org/data/defin
itions/250.html

• CWE 672 (Operation on a Resource after Expiration or Release) - https://cwe.mitre.
org/data/definitions/672.html

• CWE 749 (Exposed Dangerous Method or Function) - https://cwe.mitre.org/data/def
initions/749.html

33

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05h-Testing-Platform-Interaction.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05h-Testing-Platform-Interaction.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06h-Testing-Platform-Interaction.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06h-Testing-Platform-Interaction.md
https://owasp.org/www-project-mobile-top-10/2016-risks/m1-improper-platform-usage
https://owasp.org/www-project-mobile-top-10/2016-risks/m1-improper-platform-usage
https://owasp.org/www-project-mobile-top-10/2016-risks/m7-client-code-quality
https://owasp.org/www-project-mobile-top-10/2016-risks/m7-client-code-quality
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/250.html
https://cwe.mitre.org/data/definitions/250.html
https://cwe.mitre.org/data/definitions/672.html
https://cwe.mitre.org/data/definitions/672.html
https://cwe.mitre.org/data/definitions/749.html
https://cwe.mitre.org/data/definitions/749.html

OWASP Mobile Application Security Verification Standard v1.4.2

• CWE 772 (Missing Release of Resource after Effective Lifetime) - https://cwe.mitre.
org/data/definitions/772.html

• CWE 920 (Improper Restriction of Power Consumption) - https://cwe.mitre.org/data
/definitions/920.html

• CWE 925 (Improper Verification of Intent by Broadcast Receiver) - https://cwe.mitre.
org/data/definitions/925.html

• CWE 926 (Improper Export of Android Application Components) - https://cwe.mitre.
org/data/definitions/926.html

• CWE 927 (Use of Implicit Intent for Sensitive Communication) - https://cwe.mitre.or
g/data/definitions/927.html

• CWE 939 (Improper Authorization in Handler for Custom URL Scheme) - https://cwe.
mitre.org/data/definitions/939.html

34

https://cwe.mitre.org/data/definitions/772.html
https://cwe.mitre.org/data/definitions/772.html
https://cwe.mitre.org/data/definitions/920.html
https://cwe.mitre.org/data/definitions/920.html
https://cwe.mitre.org/data/definitions/925.html
https://cwe.mitre.org/data/definitions/925.html
https://cwe.mitre.org/data/definitions/926.html
https://cwe.mitre.org/data/definitions/926.html
https://cwe.mitre.org/data/definitions/927.html
https://cwe.mitre.org/data/definitions/927.html
https://cwe.mitre.org/data/definitions/939.html
https://cwe.mitre.org/data/definitions/939.html

OWASP Mobile Application Security Verification Standard v1.4.2

V7: Code Quality and Build Setting
Requirements

Control Objective

The goal of this control is to ensure that basic security coding practices are followed in
developing the app, and that “free” security features offered by the compiler are acti-
vated.

Security Verification Requirements

MSTG-ID Description L1 L2

7.1 MSTG-CODE-1 The app is signed and provisioned with a valid
certificate, of which the private key is properly
protected.

x x

7.2 MSTG-CODE-2 The app has been built in release mode, with
settings appropriate for a release build
(e.g. non-debuggable).

x x

7.3 MSTG-CODE-3 Debugging symbols have been removed from
native binaries.

x x

7.4 MSTG-CODE-4 Debugging code and developer assistance code
(e.g. test code, backdoors, hidden settings)
have been removed. The app does not log
verbose errors or debugging messages.

x x

7.5 MSTG-CODE-5 All third party components used by the mobile
app, such as libraries and frameworks, are
identified, and checked for known
vulnerabilities.

x x

7.6 MSTG-CODE-6 The app catches and handles possible
exceptions.

x x

7.7 MSTG-CODE-7 Error handling logic in security controls denies
access by default.

x x

7.8 MSTG-CODE-8 In unmanaged code, memory is allocated, freed
and used securely.

x x

35

OWASP Mobile Application Security Verification Standard v1.4.2

MSTG-ID Description L1 L2

7.9 MSTG-CODE-9 Free security features offered by the toolchain,
such as byte-code minification, stack protection,
PIE support and automatic reference counting,
are activated.

x x

References

The OWASP Mobile Security Testing Guide provides detailed instructions for verifying the
requirements listed above.

• Android: Testing Code Quality and Build Settings - https://github.com/OWASP/owasp-
mstg/blob/master/Document/0x05i-Testing-Code-Quality-and-Build-Settings.md

• iOS: Testing Code Quality and Build Settings - https://github.com/OWASP/owasp-
mstg/blob/master/Document/0x06i-Testing-Code-Quality-and-Build-Settings.md

For more information, see also:

• OWASP Mobile Top 10: M7 (Poor Code Quality) - https://owasp.org/www-project-
mobile-top-10/2016-risks/m7-client-code-quality

• CWE 20 (Improper Input Validation) - https://cwe.mitre.org/data/definitions/20.html
• CWE 89 (Improper Neutralization of Special Elements used in an SQL Command) -
https://cwe.mitre.org/data/definitions/89.html

• CWE 95 (Improper Neutralization of Directives in Dynamically Evaluated Code (‘Eval
Injection’)) - https://cwe.mitre.org/data/definitions/95.html

• CWE 119 (Improper Restriction of Operations within the Bounds of a Memory Buffer)
- https://cwe.mitre.org/data/definitions/119.html

• CWE 215 (Information Exposure through Debug Information) - https://cwe.mitre.or
g/data/definitions/215.html

• CWE 388 (7PK - Errors) - https://cwe.mitre.org/data/definitions/388.html
• CWE 489 (Leftover Debug Code) - https://cwe.mitre.org/data/definitions/489.html
• CWE 502 (Deserialization of Untrusted Data) - https://cwe.mitre.org/data/definitio
ns/502.html

• CWE 511 (Logic/Time Bomb) - https://cwe.mitre.org/data/definitions/511.html
• CWE 656 (Reliance on Security through Obscurity) - https://cwe.mitre.org/data/def
initions/656.html

• CWE 676 (Use of Potentially Dangerous Function) - https://cwe.mitre.org/data/defin
itions/676.html

• CWE 937 (OWASP Top Ten 2013 Category A9 - Using Components with Known Vul-
nerabilities) - https://cwe.mitre.org/data/definitions/937.html

36

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05i-Testing-Code-Quality-and-Build-Settings.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05i-Testing-Code-Quality-and-Build-Settings.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06i-Testing-Code-Quality-and-Build-Settings.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06i-Testing-Code-Quality-and-Build-Settings.md
https://owasp.org/www-project-mobile-top-10/2016-risks/m7-client-code-quality
https://owasp.org/www-project-mobile-top-10/2016-risks/m7-client-code-quality
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/95.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/215.html
https://cwe.mitre.org/data/definitions/215.html
https://cwe.mitre.org/data/definitions/388.html
https://cwe.mitre.org/data/definitions/489.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/511.html
https://cwe.mitre.org/data/definitions/656.html
https://cwe.mitre.org/data/definitions/656.html
https://cwe.mitre.org/data/definitions/676.html
https://cwe.mitre.org/data/definitions/676.html
https://cwe.mitre.org/data/definitions/937.html

OWASP Mobile Application Security Verification Standard v1.4.2

V8: Resilience Requirements

Control Objective

This section covers defense-in-depth measures recommended for apps that process, or
give access to, sensitive data or functionality. Lack of any of these controls does not
cause a vulnerability - instead, they are meant to increase the app’s resilience against
reverse engineering and specific client-side attacks.

The controls in this section should be applied as needed, based on an assessment of
the risks caused by unauthorized tampering with the app and/or reverse engineering
of the code. We suggest consulting the OWASP document “Technical Risks of Reverse
Engineering and Unauthorized Code Modification Reverse Engineering and Code Modifi-
cation Prevention” (see references below) for a list of business risks as well as associated
technical threats.

For any of the controls in the list below to be effective, the app must fulfil at least all of
MASVS-L1 (i.e., solid security controls must be in place), as well as all lower-numbered re-
quirements in V8. For examples, the obfuscation controls listed in under “impede compre-
hension” must be combined with “impede dynamic analysis and tampering” and “device
binding”.

Note that software protections must never be used as a replacement for se-
curity controls. The controls listed in MASVR-R are intended to add threat-
specific, additional protective controls to apps that also fulfil the MASVS secu-
rity requirements.

The following considerations apply:

1. A threat model must be defined that clearly outlines the client-side threats that
are to be defended. Additionally, the grade of protection the scheme is meant to
provide must be specified. For example, a stated goal could be to force authors of
targetedmalware seeking to instrument the app to invest significant manual reverse
engineering effort.

2. The threat model must be credible and relevant. For example, hiding a crypto-
graphic key in a white-box implementation might prove redundant if an attacker
can simply code-lift the white-box as a whole.

3. The effectiveness of the protection should always be verified by a human expert with
experience in testing the particular types of anti-tampering and obfuscation used
(see also the “reverse engineering” and “assessing software protections” chapters
in the Mobile Security Testing Guide).

37

OWASP Mobile Application Security Verification Standard v1.4.2

Impede Dynamic Analysis and Tampering

MSTG-ID Description R

8.1 MSTG-RESILIENCE-1 The app detects, and responds to, the presence
of a rooted or jailbroken device either by alerting
the user or terminating the app.

x

8.2 MSTG-RESILIENCE-2 The app prevents debugging and/or detects, and
responds to, a debugger being attached. All
available debugging protocols must be covered.

x

8.3 MSTG-RESILIENCE-3 The app detects, and responds to, tampering
with executable files and critical data within its
own sandbox.

x

8.4 MSTG-RESILIENCE-4 The app detects, and responds to, the presence
of widely used reverse engineering tools and
frameworks on the device.

x

8.5 MSTG-RESILIENCE-5 The app detects, and responds to, being run in an
emulator.

x

8.6 MSTG-RESILIENCE-6 The app detects, and responds to, tampering the
code and data in its own memory space.

x

8.7 MSTG-RESILIENCE-7 The app implements multiple mechanisms in
each defense category (8.1 to 8.6). Note that
resiliency scales with the amount, diversity of the
originality of the mechanisms used.

x

8.8 MSTG-RESILIENCE-8 The detection mechanisms trigger responses of
different types, including delayed and stealthy
responses.

x

8.9 MSTG-RESILIENCE-9 Obfuscation is applied to programmatic defenses,
which in turn impede de-obfuscation via dynamic
analysis.

x

38

OWASP Mobile Application Security Verification Standard v1.4.2

Device Binding

MSTG-ID Description R

8.10 MSTG-RESILIENCE-10 The app implements a ‘device binding’
functionality using a device fingerprint derived
from multiple properties unique to the device.

x

Impede Comprehension

MSTG-ID Description R

8.11 MSTG-RESILIENCE-11 All executable files and libraries belonging to the
app are either encrypted on the file level and/or
important code and data segments inside the
executables are encrypted or packed. Trivial
static analysis does not reveal important code or
data.

x

8.12 MSTG-RESILIENCE-12 If the goal of obfuscation is to protect sensitive
computations, an obfuscation scheme is used
that is both appropriate for the particular task
and robust against manual and automated
de-obfuscation methods, considering currently
published research. The effectiveness of the
obfuscation scheme must be verified through
manual testing. Note that hardware-based
isolation features are preferred over obfuscation
whenever possible.

x

Impede Eavesdropping

MSTG-ID Description R

8.13 MSTG-RESILIENCE-13 As a defense in depth, next to having solid
hardening of the communicating parties,
application level payload encryption can be
applied to further impede eavesdropping.

x

39

OWASP Mobile Application Security Verification Standard v1.4.2

References

The OWASP Mobile Security Testing Guide provides detailed instructions for verifying the
requirements listed in this section.

• Android: Testing Resiliency Against Reverse Engineering - https://github.com/OWA
SP/owasp-mstg/blob/master/Document/0x05j-Testing-Resiliency-Against-Reverse-
Engineering.md

• iOS: Testing Resiliency Against Reverse Engineering - https://github.com/OWASP
/owasp-mstg/blob/master/Document/0x06j-Testing-Resiliency-Against-Reverse-
Engineering.md

For more information, see also:

• OWASP Mobile Top 10: M8 (Code Tampering) - https://owasp.org/www-project-
mobile-top-10/2016-risks/m8-code-tampering

• OWASP Mobile Top 10: M9 (Reverse Engineering) - https://owasp.org/www-project-
mobile-top-10/2016-risks/m9-reverse-engineering

• OWASP Reverse Engineering Threats - https://wiki.owasp.org/index.php/Technical
_Risks_of_Reverse_Engineering_and_Unauthorized_Code_Modification

• OWASP Reverse Engineering and Code Modification Prevention - https://wiki.owasp
.org/index.php/OWASP_Reverse_Engineering_and_Code_Modification_Prevention_P
roject

40

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05j-Testing-Resiliency-Against-Reverse-Engineering.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05j-Testing-Resiliency-Against-Reverse-Engineering.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05j-Testing-Resiliency-Against-Reverse-Engineering.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06j-Testing-Resiliency-Against-Reverse-Engineering.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06j-Testing-Resiliency-Against-Reverse-Engineering.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06j-Testing-Resiliency-Against-Reverse-Engineering.md
https://owasp.org/www-project-mobile-top-10/2016-risks/m8-code-tampering
https://owasp.org/www-project-mobile-top-10/2016-risks/m8-code-tampering
https://owasp.org/www-project-mobile-top-10/2016-risks/m9-reverse-engineering
https://owasp.org/www-project-mobile-top-10/2016-risks/m9-reverse-engineering
https://wiki.owasp.org/index.php/Technical_Risks_of_Reverse_Engineering_and_Unauthorized_Code_Modification
https://wiki.owasp.org/index.php/Technical_Risks_of_Reverse_Engineering_and_Unauthorized_Code_Modification
https://wiki.owasp.org/index.php/OWASP_Reverse_Engineering_and_Code_Modification_Prevention_Project
https://wiki.owasp.org/index.php/OWASP_Reverse_Engineering_and_Code_Modification_Prevention_Project
https://wiki.owasp.org/index.php/OWASP_Reverse_Engineering_and_Code_Modification_Prevention_Project

OWASP Mobile Application Security Verification Standard v1.4.2

Appendix A: Glossary

• Address Space Layout Randomization (ASLR) – A technique to make exploiting
memory corruption bugs more difficult.

• Application Security – Application-level security focuses on the analysis of com-
ponents that comprise the application layer of the Open Systems Interconnection
Reference Model (OSI Model), rather than focusing on for example the underlying
operating system or connected networks.

• Application Security Verification – The technical assessment of an application
against the OWASP MASVS.

• Application Security Verification Report – A report that documents the overall
results and supporting analysis produced by the verifier for a particular application.

• Authentication – The verification of the claimed identity of an application user.
• Automated Verification – The use of automated tools (either dynamic analysis
tools, static analysis tools, or both) that use vulnerability signatures to find problems.

• Black Box Testing – It is a method of software testing that examines the function-
ality of an application without peering into its internal structures or workings.

• Component – A self-contained unit of code, with associated disk and network inter-
faces that communicates with other components.

• Cross-Site Scripting (XSS) – A security vulnerability typically found in web appli-
cations allowing the injection of client-side scripts into content.

• Cryptographic Module – Hardware, software, and/or firmware that implements
cryptographic algorithms and/or generates cryptographic keys.

• CWE – CWE is a community-developed list of common software security weaknesses.
It serves as a common language, a measuring stick for software security tools, and
as a baseline for weakness identification, mitigation, and prevention efforts.

• Dynamic Application Security Testing (DAST) – DAST technologies are designed
to detect conditions indicative of a security vulnerability in an application in its run-
ning state.

• Design Verification – The technical assessment of the security architecture of an
application.

• Dynamic Verification – The use of automated tools that use vulnerability signa-
tures to find problems during the execution of an application.

• Globally Unique Identifier (GUID) – A unique reference number used as an iden-
tifier in software.

• Hyper Text Transfer Protocol (HTTP) – An application protocol for distributed,
collaborative, hypermedia information systems. It is the foundation of data commu-
nication for the World Wide Web.

• Hardcoded Keys – Cryptographic keys which are stored in the device itself.
• IPC – Inter Process Communications,In IPC Processes communicate with each other
and with the kernel to coordinate their activities.

41

OWASP Mobile Application Security Verification Standard v1.4.2

• Input Validation – The canonicalization and validation of untrusted user input.
• Java Bytecode – Java bytecode is the instruction set of the Java virtual ma-
chine(JVM). Each bytecode is composed of one, or in some cases two bytes that
represent the instruction (opcode), along with zero or more bytes for passing
parameters.

• Malicious Code – Code introduced into an application during its development un-
beknownst to the application owner, which circumvents the application’s intended
security policy. Not the same as malware such as a virus or worm!

• Malware – Executable code that is introduced into an application during runtime
without the knowledge of the application user or administrator.

• Open Web Application Security Project (OWASP) – The Open Web Application
Security Project (OWASP) is a worldwide free and open community focused on im-
proving the security of application software. Our mission is to make application
security “visible,” so that people and organizations can make informed decisions
about application security risks. See: https://www.owasp.org/

• Personally Identifiable Information (PII) – PII is information that can be used on
its own or with other information to identify, contact, or locate a single person, or to
identify an individual in context.

• Position-Independent Executable (PIE) – A PIE is a body of machine code that,
being placed somewhere in the primary memory, executes properly regardless of
its absolute address.

• Public Key Infrastructure (PKI) – A PKI is an arrangement that binds public keys
with respective identities of entities. The binding is established through a process
of registration and issuance of certificates at and by a certificate authority (CA).

• Static Application Security Testing (SAST) – SAST is a set of technologies de-
signed to analyze application source code, byte code and binaries for coding and
design conditions that are indicative of security vulnerabilities. SAST solutions ana-
lyze an application from the “inside out” in a nonrunning state.

• SDLC – Software development lifecycle.
• Security Architecture – An abstraction of an application’s design that identifies
and describes where and how security controls are used, and also identifies and
describes the location and sensitivity of both user and application data.

• Security Configuration – The runtime configuration of an application that affects
how security controls are used.

• Security Control – A function or component that performs a security check (e.g. an
access control check) or when called results in a security effect (e.g. generating an
audit record).

• SQL Injection (SQLi) – A code injection technique used to attack data driven ap-
plications, in which malicious SQL statements are inserted into an entry point.

• SSO Authentication – Single Sign On (SSO) occurs when a user logs in to one
Client and is then signed in to other Clients automatically, regardless of the platform,

42

https://www.owasp.org/

OWASP Mobile Application Security Verification Standard v1.4.2

technology, or domain the user is using. For example when you log in in google you
automatically login in the youtube , docs and mail service.

• Threat Modeling – A technique consisting of developing increasingly refined se-
curity architectures to identify threat agents, security zones, security controls, and
important technical and business assets.

• Transport Layer Security – Cryptographic protocols that provide communication
security over the Internet

• URI and URL – A Uniform Resource Identifier is a string of characters used to identify
a name or a web resource. A Uniform Resource Locator is often used as a reference
to a resource.

• User Acceptance Testing (UAT) – Traditionally a test environment that behaves
like the production environment where all software testing is performed before going
live.

• Verifier – The person or team that is reviewing an application against the OWASP
MASVS requirements.

• Whitelist – A list of permitted data or operations, for example a list of characters
that are allowed to perform input validation.

• X.509 Certificate – An X.509 certificate is a digital certificate that uses the widely
accepted international X.509 public key infrastructure (PKI) standard to verify that
a public key belongs to the user, computer or service identity contained within the
certificate.

43

OWASP Mobile Application Security Verification Standard v1.4.2

Appendix B: References

The following OWASP projects are most likely to be useful to users/adopters of this stan-
dard:

• OWASP Mobile Security Project - https://owasp.org/www-project-mobile-security/
• OWASP Mobile Security Testing Guide - https://owasp.org/www-project-mobile-
security-testing-guide/

• OWASP Mobile Top 10 Risks - https://owasp.org/www-project-mobile-top-10/
• OWASP Reverse Engineering and Code Modification Prevention - https://wiki.owasp
.org/index.php/OWASP_Reverse_Engineering_and_Code_Modification_Prevention_P
roject

Similarly, the following web sites are most likely to be useful to users/adopters of this
standard:

• MITRE Common Weakness Enumeration - http://cwe.mitre.org/
• PCI Security Standards Council - https://www.pcisecuritystandards.org
• PCI Data Security Standard (DSS) v3.0 Requirements and Security Assessment Pro-
cedures - https://www.pcisecuritystandards.org/documents/PCI_DSS_v3.pdf

44

https://owasp.org/www-project-mobile-security/
https://owasp.org/www-project-mobile-security-testing-guide/
https://owasp.org/www-project-mobile-security-testing-guide/
https://owasp.org/www-project-mobile-top-10/
https://wiki.owasp.org/index.php/OWASP_Reverse_Engineering_and_Code_Modification_Prevention_Project
https://wiki.owasp.org/index.php/OWASP_Reverse_Engineering_and_Code_Modification_Prevention_Project
https://wiki.owasp.org/index.php/OWASP_Reverse_Engineering_and_Code_Modification_Prevention_Project
http://cwe.mitre.org/
https://www.pcisecuritystandards.org
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3.pdf

OWASP Mobile Application Security Verification Standard v1.4.2

Changelog

V1.3.1 and newer

All our Changelogs are available online at the OWASP MASVS GitHub repository, see the
Releases page.

V1.3 - 13 May 2021

We are proud to announce the introduction of a new document build pipeline, which is
a major milestone for our project. The build pipeline is based on Pandocker and Github
Actions. This significantly reduces the time spent on creating new releases and will also
be the foundation for the OWASP MSTG and will be made available for the OWASP ASVS
project.

Changes

• 4 more translations are available, which are Hindi, Farsi, Portuguese and Brazilian
Portuguese

• Added requirement MSTG-PLATFORM-11

Special Thanks

• Jeroen Willemsen for kick-starting this initiative last year!
• Damien Clochard and Dalibo for supporting and professionalizing the build pipeline.
• All our Hindi, Farsi, Portuguese and Brazilian Portuguese collaborators for the excel-
lent translation work.

V1.2 - 7 March 2020 - International Release

The following changes are part of release 1.2:

• Translation in simplified Chinese of the MASVS available.
• Change of title in MASVS book cover.
• Removed Mobile Top 10 and CWE from MSTG and merged to existing references in
MASVS.

45

https://github.com/OWASP/owasp-masvs/releases
https://github.com/dalibo/pandocker
https://github.com/OWASP/owasp-masvs/tree/master/.github/workflows
https://github.com/OWASP/owasp-masvs/tree/master/.github/workflows

OWASP Mobile Application Security Verification Standard v1.4.2

V1.2-RC - 5 October 2019 - Pre-release (English only)

The following changes are part of pre-release 1.2:

• Promoted to flagship status.
• Requirement changed: MSTG-STORAGE-1 “need to be used”.
• Requirements MSTG-STORAGE-13, MSTG-STORAGE-14, and MSTG-STORAGE-15 are
added with a focus on data protection.

• Requirement MSTG-AUTH-11 is updated to preserve contextual information.
• Requirement MSTG-CODE-4 is updated to cover more than just debugging.
• Requirement MSTG-PLATFORM-10 added to further secure usage of WebViews.
• Requirement MSTG-AUTH-12 added to remind developers of having authorizations
implemented, especially in case of multi-user apps.

• Added a little more description on how the MASVS should be used given a risk as-
sessment.

• Added a little more description on paid content.
• Requirement MSTG-ARCH-11 added to include a Responsible Disclosure policy for L2
applications.

• Requirement MSTG-ARCH-12 added to show application developers that relevant
international privacy laws should be followed.

• Created a consistent style for all references in the English version.
• Requirement MSTG-PLATFORM-11 added to counter spying via third party key-
boards.

• Requirement MSTG-MSTG-RESILIENCE-13 added to impede eavesdropping at an ap-
plication.

V1.1.4 - 4 July 2019 - Summit edition

The following changes are part of release 1.1.4:

• Fix all markdown issues.
• Updates in the French and Spanish translations.
• Translated the changelog to Chinese (ZHTW) and Japanese.
• Automated verification of the the markdown syntax and reachability of the URLs.
• Added identification codes to the requirements, which will be included in the future
version of the MSTG in order to find the recommendations and testcases easily.

• Reduced the repo size and added Generated to the .gitignore.
• Added a Code of Conduct & Contributing guidelines.
• Added a Pull-Request template.
• Updated the sync with the repo in use for hosting the Gitbook website.
• Updated the scripts to generate XML/JSON/CSV for all the translations.
• Translated the Foreword to Chinese (ZHTW).

46

OWASP Mobile Application Security Verification Standard v1.4.2

V1.1.3 - 9 January 2019 - Small fixes

• Fix translation issue of requirement 7.1 in the Spanish version
• New setup of translators in acknowledgements

V1.1.2 - 3 January 2019 - Sponsorship and internationalization

The following changes are part of release 1.1.2:

• Added thank you note for buyers of the e-book.
• Added missing authentication link & updated broken authentication link in V4.
• Fixed swap of 4.7 and 4.8 in English.
• First international release!

– Fixes in Spanish translation. Translation is now in sync with English (1.1.2).
– Fixes in Russian translation. Translation is now in sync with English (1.1.2).
– Added first release of Chinese (ZHTW) French, German, and Japanese!

• Simplified document for ease of translation.
• Added instructions for automated releases.

V1.1.0 - 14 July 2018

The following changes are part of release 1.1:

• Requirement 2.6 “The clipboard is deactivated on text fields that may contain sen-
sitive data.” was removed.

• Requirement 2.2 “No sensitive data should be stored outside of the app container
or system credential storage facilities.” was added.

• Requirement 2.1 was reworded to “System credential storage facilities are used
appropriately to store sensitive data, such as PII, user credentials or cryptographic
keys.”.

V1.0 12 - January 2018

The following changes are part of release 1.0:

• Delete 8.9 as the same as 8.12
• Made 4.6 more generic
• Minor fixes (typos etc.)

47

	Foreword
	About the Standard
	Copyright and License
	Acknowledgements

	The Mobile Application Security Verification Standard
	Mobile AppSec Model

	Assessment and Certification
	OWASP's Stance on MASVS Certifications and Trust Marks
	Guidance for Certifying Mobile Apps
	Other Uses

	V1: Architecture, Design and Threat Modeling Requirements
	Control Objective
	Security Verification Requirements
	References

	V2: Data Storage and Privacy Requirements
	Control Objective
	Security Verification Requirements
	References

	V3: Cryptography Requirements
	Control Objective
	Security Verification Requirements
	References

	V4: Authentication and Session Management Requirements
	Control Objective
	Security Verification Requirements
	References

	V5: Network Communication Requirements
	Control Objective
	Security Verification Requirements
	References

	V6: Platform Interaction Requirements
	Control Objective
	Security Verification Requirements
	References

	V7: Code Quality and Build Setting Requirements
	Control Objective
	Security Verification Requirements
	References

	V8: Resilience Requirements
	Control Objective
	References

	Appendix A: Glossary
	Appendix B: References
	Changelog
	V1.3.1 and newer
	V1.3 - 13 May 2021
	V1.2 - 7 March 2020 - International Release
	V1.2-RC - 5 October 2019 - Pre-release (English only)
	V1.1.4 - 4 July 2019 - Summit edition
	V1.1.3 - 9 January 2019 - Small fixes
	V1.1.2 - 3 January 2019 - Sponsorship and internationalization
	V1.1.0 - 14 July 2018
	V1.0 12 - January 2018

