
Quick Start Guide
to Penetration
Testing

With NMAP, OpenVAS and Metasploit
—
Sagar Rahalkar

Quick Start Guide to
Penetration Testing
With NMAP, OpenVAS and

Metasploit

Sagar Rahalkar

Quick Start Guide to Penetration Testing

ISBN-13 (pbk): 978-1-4842-4269-8 ISBN-13 (electronic): 978-1-4842-4270-4
https://doi.org/10.1007/978-1-4842-4270-4

Library of Congress Control Number: 2018964909

Copyright © 2019 by Sagar Rahalkar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Nikhil Karkal
Development Editor: Matthew Moodie
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-4269-8.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Sagar Rahalkar
Pune, Maharashtra, India

https://doi.org/10.1007/978-1-4842-4270-4

iii

About the Author ��vii

About the Technical Reviewer ���ix

Introduction ���xi

Table of Contents

Chapter 1: Introduction to NMAP ��1

NMAP ��4

NMAP Installation ��5

Introduction to NMAP and ZENMAP ���6

NMAP Port States ��8

Basic Scanning with NMAP ���9

NMAP Scripts ���20

NMAP Output ���40

NMAP and Python ��40

Summary���44

Do-It-Yourself (DIY) Exercises ���45

Chapter 2: OpenVAS ��47

Introduction to OpenVAS ���48

Installation ��49

OpenVAS Administration ���55

Feed Update ��55

User Management ���57

Dashboard ���59

iv

Scheduler ��60

Trashcan ��60

Help ���61

Vulnerability Scanning ��62

OpenVAS Additional Settings ���66

Performance ��66

CVSS Calculator ���67

Settings ���68

Reporting ��69

Summary���71

Do-It-Yourself (DIY) Exercises ���71

Chapter 3: Metasploit ���73

Introduction to Metasploit ���73

Anatomy and Structure of Metasploit ���74

Auxiliaries ��76

Payloads ��76

Exploits ��77

Encoders ���77

Post-Exploitation Activities (Post) ��78

Basic Commands and Configuration ���79

help ��80

version ���81

connect ��82

history ���83

set and setg ���84

get and getg ��85

unset and unsetg ���85

Table of ConTenTsTable of ConTenTs

v

save ���86

info ��87

irb ��87

show ��88

spool ��89

makerc ��89

db_initiate ���90

db_status ���90

workspace ���91

Invoking NMAP and OpenVAS Scans from Metasploit ��92

NMAP ���92

OpenVAS ��95

Scanning and Exploiting Services with Metasploit Auxiliaries ��������������������������100

DNS ��100

FTP���101

HTTP ��102

RDP ��104

SMB ���104

SSH ��106

VNC ��107

Meterpreter Basics ���108

Meterpreter Commands ��108

Core Commands ��108

Stdapi: System Commands ��110

Stdapi: User Interface Commands ���112

Stdapi: Webcam Commands ��112

Stdapi: Audio Output Commands ���113

Priv: Elevate Commands ��113

Table of ConTenTsTable of ConTenTs

vi

Priv: Password Database Commands ��114

Priv: Timestomp Commands ��114

Using Meterpreter ���114

sysinfo ���115

ls ��116

getuid ��117

getsystem ��117

screenshot ���118

hashdump ��119

Searchsploit ���120

Summary���120

Do-It-Yourself (DIY) Exercises ���121

Chapter 4: Use Case ��123

Creating a Virtual Lab ��123

Carrying Out Reconnaissance ���124

Exploiting the System ���126

 Index ���135

Table of ConTenTsTable of ConTenTs

vii

About the Author

Sagar Rahalkar is a seasoned information security professional with

11 years of comprehensive experience in the various verticals of

information security. His domain expertise is in cybercrime investigations,

digital forensics, application security, vulnerability assessment and

penetration testing, compliance for mandates and regulations, and IT

CRC. He has a master’s degree in computer science and several industry-

recognized certifications such as Certified Cyber Crime Investigator,

Certified Ethical Hacker, Certified Security Analyst, ISO 27001 Lead

Auditor, IBM Certified Specialist – Rational AppScan, Certified Information

Security Manager (CISM), and PRINCE2, to name a few. He has been

closely associated with Indian law enforcement agencies for more than

four years, dealing with digital crime investigations and related trainings

for officers, and has received several awards and appreciations from senior

officials in police and defense organizations in India. He is the author of

several books and articles on information security.

ix

About the Technical Reviewer

Sanjib Sinha is a certified .NET Windows and

web developer, specializing in Python, security

programming, and PHP; he won Microsoft’s

Community Contributor Award in 2011. As a

published author, his books include Beginning

Ethical Hacking with Python and Beginning

Laravel, published by Apress.

xi

Introduction

Vulnerability assessment and penetration testing have become very

important, especially in the past couple of years. Organizations often have

complex networks of assets storing sensitive data, and such assets are

exposed to potential threats from the inside as well as from the outside. To

get an overview of the security posture of an organization, conducting a

vulnerability assessment is an essential step. Performing penetration tests

requires a well-planned and methodical approach.

To help you perform various tasks across the phases of the penetration

testing lifecycle, there are tons of tools, scripts, and utilities available. Linux

distributions such as Kali Linux even provide bundled tools to perform

these tasks.

It is natural to get overwhelmed with the number of tools available.

However, there are a few tools that are so powerful and flexible that they

alone can perform most of the tasks across the phases of the penetration

testing lifecycle.

This book will get you started with the fundamentals of three such

tools: NMAP, OpenVAS, and Metasploit. Just by using these three tools

alone, you will acquire extensive penetration testing capabilities.

By the end of this book, you’ll have a substantial understanding of

NMAP, OpenVAS, and Metasploit and will be able to apply your skills in

real-world pen testing scenarios.

1© Sagar Rahalkar 2019
S. Rahalkar, Quick Start Guide to Penetration Testing,
https://doi.org/10.1007/978-1-4842-4270-4_1

CHAPTER 1

Introduction to NMAP
Vulnerability assessment and penetration testing have gained high

importance especially in the last couple of years. Organizations often have

a complex network of assets storing sensitive data. Such assets are exposed

to potential threats from inside as well as from outside the organization. To

get an overview of the security posture of the organization, conducting a

vulnerability assessment is essential.

It is important to understand the clear difference between vulnerability

assessments and penetration testing. To understand this difference, let’s

consider a real-world scenario. You notice that your neighbor’s door isn’t

locked properly, and the neighbor is not at home. This is a vulnerability

assessment. Now if you actually open the neighbor’s door and enter the

house, then that is a penetration test. In an information security context,

you may notice that the SSH service is running with weak credentials; this

is part of a vulnerability assessment. If you actually use those credentials

to gain access, then it is a penetration test. Vulnerability assessments

are often safe to perform, while penetration tests, if not performed in a

controlled way, can cause serious damage on the target systems.

Thus, a vulnerability assessment is one of the essential prerequisites

for conducting a penetration test. Unless you know what vulnerabilities

exist on the target system, you won’t be able to exploit them.

2

Performing penetration tests requires a well-planned and

methodological approach. It is a multistep process. The following are some

of the phases of penetration testing:

• Information gathering: Information gathering

is the most important phase of the penetration

testing lifecycle. This phase is also referred to as

reconnaissance. It involves the use of various passive

and active techniques to gather as much information as

possible about the target system. Detailed information

gathering lays a solid foundation for further phases in

the penetration testing lifecycle.

• Enumeration: Once you have basic information about

the target, the enumeration phase uses various tools

and techniques to probe the target in detail. It involves

finding out the exact service versions running on the

target system.

• Vulnerability assessment: The vulnerability

assessment phase involves the use of various tools

and methodologies to affirm the existence of known

vulnerabilities in the target system.

• Gaining access: From the previous phase, you have a list

of probable vulnerabilities for your target. You can now

attempt to exploit these vulnerabilities to gain access to

the target system.

• Escalating privileges: You may get access to your

target system by exploiting a particular vulnerability;

however, the access may be restricted. To infiltrate

deeper, you need to use various techniques and

escalate the privileges to that of highest level such as

administrator, root, and so on.

Chapter 1 IntroduCtIon to nMap

3

• Maintaining access: Now that you have worked hard

gaining access to the target system, you will certainly

want it to persist. This phase involves using various

techniques to make the access to the target system

persistent.

• Covering tracks: The penetration process may create

garbage files, modify configuration files, change registry

entries, create audit logs, and so on. Covering your

tracks involves cleaning up all the traces left during the

previous phases.

To perform various tasks in these phases, there are hundreds of tools,

scripts, and utilities available. Linux distributions such as Kali Linux even

provide bundled tools to perform these tasks.

It is natural to get overwhelmed with the number of tools available.

However, there are a few tools that are so powerful and flexible that they

alone can perform most of the tasks in all of these phases.

This book is about three such tools: NMAP, OpenVAS, and Metasploit.

Just having these three tools in your arsenal can provide extensive

penetration testing capabilities.

Table 1-1 describes how these tools could be used in various phases of

the penetration testing lifecycle.

Chapter 1 IntroduCtIon to nMap

4

From this table, it is evident that the three tools are capable of

performing the tasks across all the phases of the penetration testing

lifecycle.

This book focuses on these three tools and helps you get started with

fundamentals of each of these tools. This chapter will cover NMAP.

 NMAP
Now that you have a fair idea of the different phases in the penetration

testing lifecycle and what tools are required, let’s move on to our first

tool, NMAP. You’ll learn about various features of NMAP including the

following:

• Installing NMAP

• Using NMAP with ZENMAP

• Understanding the NMAP port states

• Conducting basic scanning with NMAP

Table 1-1. Tools for Pen Testing Phases

Penetration Testing Phase Tool

Information gathering nMap, Metasploit

enumeration nMap, Metasploit

Vulnerability assessment openVaS

Gaining access Metasploit

escalating privileges Metasploit

Maintaining access Metasploit

Covering tracks Metasploit

Chapter 1 IntroduCtIon to nMap

5

• Understanding TCP scans versus UDP scans

• Enumerating target operating systems and services

• Fine-tuning the scans

• Using NMAP scripts

• Invoking NMAP from Python

 NMAP Installation
NMAP can be installed on both Windows and Unix-based systems. To

install NMAP on Windows, simply go to https://nmap.org/download.

html, download the executable, and install it.

For Unix-based systems, you can install NMAP from the command

line. Security distributions like Kali Linux have NMAP installed by default.

However, for other regular distributions, it needs to be installed separately.

You can simply use the command apt install nmap for Debian-

based systems, as shown in Figure 1-1. This command will install NMAP

along with all the required dependencies.

Chapter 1 IntroduCtIon to nMap

https://nmap.org/download.html
https://nmap.org/download.html

6

 Introduction to NMAP and ZENMAP
NMAP was initially a command-line utility. On a Linux terminal, you can

simply type the command nmap to get started. Figure 1-2 shows the output

of the nmap command. It displays the various parameters and switches that

need to be configured to scan a target.

Figure 1-1. Installing NMAP on a Debian-based system

Chapter 1 IntroduCtIon to nMap

7

ZENMAP is a graphical front end to NMAP. It offers the same

functionality in a more user-friendly way. ZENMAP is part of the default

Kali Linux installation and can be accessed at Applications ➤ Information

Gathering ➤ ZENMAP. Figure 1-3 shows the initial ZENMAP screen. The

ZENMAP interface has three main configurable settings.

• Target: This can be a single IP address, list of multiple

IPs, or an entire subnet.

• Profile: ZENMAP has set of several predefined scan

profiles. The profiles are classified based on the types of

scans available in NMAP. Either you can choose among

the available profiles or you can have a custom scan as

per your requirements.

Figure 1-2. Output of the nmap command on the terminal

Chapter 1 IntroduCtIon to nMap

8

• Command: Once you enter a target and select a

predefined profile, ZENMAP will autopopulate the

Command field. You can also use this field if you want to

execute a customized scan against the predefined profile.

Figure 1-3. Initial screen/interface of ZENMAP

 NMAP Port States
Though the current version of NMAP is capable of performing many tasks,

it initially started out as a port scanner. NMAP has certain ways to detect

whether the port on the target system is open or closed. NMAP detects the

status of the target port using predefined states as follows:

Open: The Open state indicates that an application

on the target system is actively listening for

connections/packets on that port.

Closed: The Closed state indicates there isn’t any

application listening on that port. However, the port

state could change to Open in the future.

Chapter 1 IntroduCtIon to nMap

9

Filtered: The Filtered state indicates that either a

firewall, a filter, or some kind of network hurdle is

blocking the port and hence NMAP isn’t able to

determine whether it is open or closed.

Unfiltered: The Unfiltered state indicates that ports

are responding to NMAP probes; however, it isn’t

possible to determine whether they are open or

closed.

Open/Filtered: The Open/Filtered state indicates

that the port is either filtered or open; however,

NMAP isn’t precisely able to determine the state.

Closed/Filtered: The Closed/Filtered state indicates

that the port is either filtered or closed; however,

NMAP isn’t precisely able to determine the state.

 Basic Scanning with NMAP
NMAP is a complex tool with numerous options and switches available.

In this section, you’ll see various NMAP usage scenarios starting with the

most basic scans.

Before you get into the actual scanning, it is important to note that

NMAP is a noisy tool. It creates a lot of network traffic and at times can

consume much bandwidth. Many of the intrusion detection systems and

intrusion prevention systems may detect and block NMAP traffic. It is said

that a basic default NMAP scan on one single host can generate more than

4MB of network traffic. So, even if you do a basic scan on an entire subnet,

it will create around 1GB of traffic. Hence, it is essential to perform NMAP

scans with complete knowledge of the switches being used.

Chapter 1 IntroduCtIon to nMap

10

 Basic Scan on a Single IP

Here’s the command:

nmap -sn <target IP address>

Let’s start with a basic ping scan on a single target. A ping scan will

not check for any open ports; however, it will tell you whether the target is

alive. Figure 1-4 shows the output of a ping scan done on a single target IP

address.

Figure 1-4. Output of basic NMAP scan done on single IP address

 Basic Scan on an Entire Subnet

Here’s the command:

nmap -sn <target IP subnet>

In a practical scenario, you may have multiple IP addresses that you

need to check. To get a quick overview of which hosts in a given subnet are

alive, you can do an NMAP ping scan on the entire subnet. A subnet is just

a logical division of the network. Scanning the entire subnet will give you

an overview of what systems are present in the network. Figure 1-5 shows

the output of a ping scan done on subnet 192.168.25.0-255. You can see

that out of 255 hosts, only seven hosts are up and running. Now you can

further probe these seven hosts and get more detailed information.

Chapter 1 IntroduCtIon to nMap

11

 Scan Using an Input File

Here’s the command:

nmap -sn -iL <file path>

There might be a scenario where you need to scan a wide range of

IP addresses. Instead of entering them in a comma-separated format to

NMAP, you can put them all in a file and feed that file to the NMAP engine.

Figure 1-6 shows the content of the hosts.txt file that contains a list of IP

addresses.

Figure 1-5. Output of basic NMAP scan done on a subnet

Chapter 1 IntroduCtIon to nMap

12

Now you can simply feed the hosts.txt file to NMAP and perform the

scan, as shown in Figure 1-7.

Figure 1-6. Hosts file containing a list of IP addresses to be
scanned

Figure 1-7. Output of basic NMAP scan done on multiple IP
addresses listed in hosts.txt file

 Reason Scan

Here’s the command:

nmap --reason<target IP address>

Chapter 1 IntroduCtIon to nMap

13

In a normal NMAP scan, you might get a list of open ports; however,

you will not know the reason why NMAP reported a particular port as

open. The NMAP reason scan is an interesting option where NMAP

provides a reason for every port reported as open, as shown in Figure 1- 8.

NMAP scans are based on the TCP flags that are set in the request and

response. In this case, the open ports were detected based on the SYN and

ACK flags set in TCP packets.

Figure 1-8. Output of reason NMAP scan done on a single IP
address

 Supported Protocols

Here’s the command:

nmap -sO<target IP address>

As part of information gathering and reconnaissance, it may be

worthwhile to know what IP protocols are supported by the target. Figure 1-9

shows that this target is supporting two protocols: TCP and ICMP.

Chapter 1 IntroduCtIon to nMap

14

 Firewall Probe

In an enterprise network full of firewalls, intrusion detection systems, and

intrusion prevention systems, it is quite possible that your NMAP scans

will not only be detected but also be blocked. NMAP offers a way to probe

whether its scans are getting filtered by any intermediate device like a

firewall. Figure 1-10 shows that all 1,000 ports that NMAP scanned were

unfiltered; hence, there wasn’t the presence of any filtering device.

Figure 1-9. Output of NMAP protocol scan done on a single IP address

Figure 1-10. Output of NMAP firewall probe done against a single IP
address

Chapter 1 IntroduCtIon to nMap

15

 Topology

ZENMAP has an interesting feature that helps you visualize the network

topology. Say you did a ping scan on the subnet and found a few hosts

alive. Figure 1-11 shows the network topology diagram for the hosts that

you found alive. The diagram can be accessed using the Topology tab

within the ZENMAP interface.

Figure 1-11. Host topology diagram in ZENMAP

 Quick TCP Scan

Here’s the command:

nmap -T4 -F<target IP address>

Now that you have list of hosts that are alive within the subnet, you can

perform some detailed scans to find out the ports and services running

on them. You can set the target IP address, select Quick Scan as the

profile, and then execute the scan. Figure 1-12 shows the output of a scan

highlighting several ports open on the target.

Chapter 1 IntroduCtIon to nMap

16

 Service Enumeration

Here’s the command:

nmap -sV<target IP address>

Now that you have a live host and you also know which ports are

open, it’s time to enumerate the services associated with those ports. For

example, you can see that port 21 is open. Now you need to know which

service is associated with it and what is the exact version of the server

catering the service. You can use the command nmap -sV <target IP

address>, as shown in Figure 1-13. The -sV switch stands for the service

version. Enumerating services and their versions provides a wealth of

information that can be used to build further attacks.

Figure 1-12. Output of quick TCP NMAP scan done on a single IP
address

Chapter 1 IntroduCtIon to nMap

17

 UDP Port Scan

Here’s the command:

nmap -sU -p 1-1024<target IP address>

All the scans that you did so far gave you information only about TCP

ports. However, the target may also have services running on UDP ports.

A default NMAP scan probes only TCP ports. You need to exclusively

scan for UDP ports and services. To scan common UDP ports, you can

use the command nmap -sU -p 1-1024 <target IP address>. The -sU

parameter will tell the NMAP engine to specifically scan UDP ports, while

the -p 1-1024 parameter will limit the NMAP to scan only ports in the

range 1 to 1024. It is also important to note that the UDP port scan takes a

significantly longer time than a normal TCP scan. Figure 1-14 shows the

output of a sample UDP scan.

Figure 1-13. Output of NMAP service scan done on a single IP
address

Chapter 1 IntroduCtIon to nMap

18

 OS Detection

Here’s the command:

nmap -O<target IP address>

Now that you know how to probe for open ports and enumerate

services, you can go further and use NMAP to detect the operating system

version that the target is running on. You can use the command nmap

-O <target IP address>. Figure 1-15 shows the output of an NMAP

operating system detection probe. You can see that the target is running

Linux based on kernel 2.6.X.

Figure 1-14. Output of basic NMAP UDP scan done on a single IP
address

Chapter 1 IntroduCtIon to nMap

19

 Intense Scan

Here’s the command:

nmap -T4 -A -v <target IP address>

So far, you have used NMAP for performing individual tasks such

as port scanning, service enumeration, and OS detection. However, it is

possible to perform all these tasks with a single command. You can simply

set your target IP address and select the intense scan profile. NMAP will do

a TCP port scan, enumerate services, and in addition run some advanced

scripts to give more useful results. For example, Figure 1-16 shows the

output of an NMAP intense scan that not only enumerated an FTP server

but also highlighted that it has Anonymous FTP access enabled.

Figure 1-15. Output of NMAP OS detection scan done on a single IP
address

Chapter 1 IntroduCtIon to nMap

20

NMAP Scripts
NMAP has long evolved from a basic port scanner. It is way more powerful

and flexible than just a port scanner. NMAP’s functionality can be

extended using NMAP scripts. The NMAP scripting engine is capable of

executing scripts allowing in-depth target enumeration and information

gathering. NMAP has about 600 scripts serving different purposes. In

Kali Linux, the scripts can be found at /usr/share/nmap/scripts. The

next section will discuss how you can use NMAP scripts for enumerating

various TCP services.

 HTTP Enumeration

HTTP is a common service found on many hosts. It runs on port 80 by

default. NMAP has a script for enumerating HTTP services. It can be

invoked using the command nmap –script http-enum <target IP

Figure 1-16. Output of intense NMAP scan done on a single IP address

Chapter 1 IntroduCtIon to nMap

21

address>. Figure 1-17 shows the output of the http-enum script. It shows

various interesting directories hosted on the web server that may be useful

in building further attacks.

Figure 1-17. Output of NMAP script http-enum executed against
target IP address

Chapter 1 IntroduCtIon to nMap

22

 HTTP Methods

HTTP supports the use of various methods such as GET, POST, DELETE,

and so on. Sometimes these methods are left open on the web server

unnecessarily. you can use the NMAP script http-methods, as shown in

Figure 1-18, to enumerate HTTP methods allowed on the target system.

Figure 1-18. Output of NMAP script http-methods executed against a
target IP address

Chapter 1 IntroduCtIon to nMap

23

The following are some additional NMAP scripts for HTTP enumeration:

• http-title

• http-method-tamper

• http-trace

• http-fetch

• http-wordpress-enum

• http-devframework

• http NSE Library

 SMB Enumeration

Server Message Block (SMB) is a protocol extensively used for network file

sharing. SMB commonly runs on port 445. So, if you find a target with port

445 open, you further enumerate it using NMAP scripts. you can invoke the

SMB enumeration by using the command nmap -p 445 –script-smb- os-

discovery <target IP address>. The -p 445 parameter triggers the script

to run against port 445 on the target. The script output shown in Figure 1-19

will give you the exact SMB version, the OS used, and the NetBIOS name.

Figure 1-19. Output of NMAP script smb-os-discovery executed
against a target IP address

Chapter 1 IntroduCtIon to nMap

24

Another useful NMAP script is smb-enum-shares, as shown in Figure 1- 20.

It lists all the SMB shares on the target system.

Figure 1-20. Output of NMAP script smb-enum-shares executed
against target IP address

The following are some additional NMAP scripts for SMB enumeration:

• smb-vuln-ms17-010

• smb-protocols

• smb-mbenum

• smb-enum-users

Chapter 1 IntroduCtIon to nMap

25

• smb-enum-processes

• smb-enum-services

 DNS Enumeration

The Domain Name System is indeed the backbone of the Internet as it

does the crucial job of translating host names to IP addresses and vice

versa. It runs on port 53 by default. Enumerating a DNS server can give

a lot of interesting and useful information. NMAP has several scripts for

enumerating a DNS service. Figure 1-21 shows a DNS server enumeration

revealing its version details.

Figure 1-21. Output of DNS enumeration executed against a target
IP address

Chapter 1 IntroduCtIon to nMap

26

The following are some additional NMAP scripts for DNS enumeration:

• dns-cache-snoop

• dns-service-discovery

• dns-recursion

• dns-brute

• dns-zone-transfer

• dns-nsid

• dns-nsec-enum

• dns-fuzz

• dns-srv-enum

 FTP Enumeration

File Transfer Protocol (FTP) is the most commonly used protocol for

transferring files between systems. It runs on port 21 by default. NMAP has

multiple scripts for enumerating FTP service. Figure 1-22 shows the output

of two scripts.

• ftp-syst

• ftp-anon

The output shows the FTP server version details and reveals that the

server is accepting anonymous connections.

Chapter 1 IntroduCtIon to nMap

27

Since the target is running the vsftpd server, you can try another NMAP

script, which will check whether the FTP server is vulnerable. The script

ftp-vsftpd-backdoor can be used, as shown in Figure 1-23.

Figure 1-22. Output of NMAP scripts ftp-syst and ftp-anon executed
against a target IP address

Chapter 1 IntroduCtIon to nMap

28

The result shows that the FTP server is vulnerable; you’ll learn how to

exploit it later in this book.

The following are some additional NMAP scripts for FTP enumeration:

• ftp-brute

• ftp NSE

• ftp-bounce

• ftp-vuln-cve2010-4221

• ftp-libopie

Figure 1-23. Output of NMAP script ftp-vsftpd-backdoor executed
against a target IP address

Chapter 1 IntroduCtIon to nMap

29

 MySQL Enumeration

MySQL is one of the most popular open source relational database

management systems. It runs on port 3306 by default. NMAP has scripts for

enumerating the MySQL service. Enumerating a MySQL service can reveal

a lot of potential information that could be further used to attack the target

database. Figure 1-24 shows the output of the mysql-info script. It shows

the protocol version details, server capabilities, and the salt value in use.

Figure 1-24. Output of NMAP script mysql-info executed against a
target IP address

The following are some additional NMAP scripts for MySQL enumeration:

• mysql-databases

• mysql-enum

• mysql-brute

• mysql-query

• mysql-empty-password

• mysql-vuln-cve2012-2122

• mysql-users

• mysql-variables

Chapter 1 IntroduCtIon to nMap

30

 SSH Enumeration

The Secure Shell (SSH) protocol is widely used for secure remote logins

and administration. Unlike Telnet, SSH encrypts the traffic, making the

communication secure. It runs on port 22 by default. NMAP has scripts for

enumerating the SSH service. Figure 1-25 shows output of the ssh2-enum-

algos script. It lists the different encryption algorithms supported by the

target SSH server.

Figure 1-25. Output of NMAP script ssh2-enum-algos executed
against a target IP address

Chapter 1 IntroduCtIon to nMap

31

The following are some additional NMAP scripts for SSH enumeration:

• ssh-brute

• ssh-auth-methods

• ssh-run

• ssh-hostkey

• sshv1

• ssh-publickey-acceptance

 SMTP Enumeration

Simple Mail Transfer Protocol (SMTP) is used for the transmission of

electronic mail. It runs on port 25 by default. NMAP has several scripts

for enumerating the SMTP service. These NMAP scripts could reveal

several weaknesses in the SMTP server such as open relays, acceptance

of arbitrary commands, and so on. Figure 1-26 shows output of the smtp-

commands script. It lists various commands that the target SMTP server is

accepting.

Chapter 1 IntroduCtIon to nMap

32

Many SMTP servers mistakenly enable open relay. This allows anyone

to connect to the SMTP server without authentication and to send mails.

This is indeed a critical flaw. NMAP has a script called smtp-open-relay

that checks whether the target SMTP server allows for open relays, as

shown in Figure 1-27.

Figure 1-26. Output of NMAP script smtp-commands executed
against a target IP address

Chapter 1 IntroduCtIon to nMap

33

The following are some additional NMAP scripts for SMTP

enumeration:

• smtp-enum-users

• smtp-commands

• smtp-brute

• smtp-ntlm-info

• smtp-strangeport

• smtp-vuln-cve2011-1764

Figure 1-27. Output of NMAP script smtp-open-relay executed
against a target IP address

Chapter 1 IntroduCtIon to nMap

34

 VNC Enumeration

The Virtual Network Computing (VNC) protocol is commonly used for

remote graphical desktop sharing. It runs on port 5900 by default. NMAP

has several scripts for enumerating the VNC service. Figure 1-28 shows the

output of the vnc-info script. It shows the protocol version details along

with the authentication type.

Figure 1-28. Output of NMAP script vnc-info executed against a
target IP address

Chapter 1 IntroduCtIon to nMap

35

The following are some additional NMAP scripts for VNC

enumeration:

• vnc-brute

• realvnc-auth-bypass

• vnc-title

 Service Banner Grabbing

Any service running on a system usually has a banner associated with it.

A banner normally contains server version information and may even

contain organization-specific information such as disclaimers, warnings,

or some corporate e-mail addresses. It is certainly worthwhile to grab

service banners to get more information about the target. The NMAP script

banner probes all services running on the target and grabs their banners,

as shown in Figure 1-29.

Chapter 1 IntroduCtIon to nMap

36

 Detecting Vulnerabilities

So far, you have seen the NMAP capabilities of port scanning and

enumeration. Now you’ll see how NMAP can be used for conducting

vulnerability assessments. Though not as comprehensive as vulnerability

scanners like Nessus and OpenVAS, NMAP can certainly do basic

vulnerability detection. NMAP does this with the help of Common

Vulnerabilities and Exposure (CVE) IDs. It searches for matching

CVEs against the services running on the target. To turn NMAP into

Figure 1-29. Output of NMAP script banner executed against a
target IP address

Chapter 1 IntroduCtIon to nMap

37

a vulnerability scanner, you first need to download and install some

additional scripts. Figure 1-30 shows the installation of required scripts.

You first navigate to directory /usr/share/nmap/scripts and then clone

two git directories, as shown here:

• https://github.com/vulnersCom/nmap-vulners.git

• https://github.com/scipag/vulscan.git

Figure 1-30. Git cloning nmap-vulners into local directory

Once you have downloaded the required scripts, you are all set to

execute them against the target. You can use the command nmap -sV –

script nmap-vulners <target IP address>, as shown in Figure 1-31.

Chapter 1 IntroduCtIon to nMap

https://github.com/vulnersCom/nmap-vulners.git
https://github.com/scipag/vulscan.git

38

Interestingly, you can see many CVEs are available against the ISC

BIND 9.4.2 running on TCP port 53. This CVE information can be used to

further exploit the target. You can also see several CVEs for TCP port 80

running the Apache httpd 2.2.8 server, as shown in Figure 1-32.

Figure 1-31. Output of NMAP script nmap-vulners executed against
a target IP address

Chapter 1 IntroduCtIon to nMap

39

Figure 1-32. Output of NMAP script nmap-vulners executed against
a target IP address

Chapter 1 IntroduCtIon to nMap

40

 NMAP Output
So far, you have scanned various useful NMAP features. It is important to

note that the output produced by NMAP can be fed to many other security

tools and products. Hence, you must be aware of different output formats

that NMAP is capable of producing, shown here:

Switch Example Description

-oN nmap 192.168.25.129

-oN output.txt

performs a scan on a target Ip address

and then writes normal output to the file

output.txt

 -oX nmap 192.168.25.129

-oX output.xml

performs a scan on a target Ip address

and then writes normal output to the

XML file output.xml

 -oG nmap 192.168.25.129

-oG output.grep

performs a scan on a target Ip address

and then writes greppable output to the

file output.grep

 --append-

output

nmap 192.168.25.129

-oN file.file

--append-output

performs a scan on a target Ip address

and then appends the scan output to a

previous scan file

 NMAP and Python
Throughout this chapter you have seen numerous capabilities of NMAP

and how NMAP can be used effectively for information gathering,

enumeration, and active scanning. NMAP can also be invoked and

executed from various programming languages, making it even more

powerful. Python is an interpreted high-level programming language

for general-purpose programming. Python is indeed user-friendly and

extremely flexible. It has a rich set of ready-to-use libraries for performing

Chapter 1 IntroduCtIon to nMap

41

various tasks. Getting into the details of Python language basics and

syntax is beyond the scope for this book. Assuming you have some basic

knowledge about Python, this section will discuss how you can use Python

to invoke and automate NMAP scans.

Python is installed by default on most Unix-based systems. However,

you need to install the NMAP library separately. On Debian-based

systems, you can simply use the command pip install python-nmap,

as shown in Figure 1-33. The command will install the required NMAP

library.

Figure 1-33. Installing the python-nmap library on a Debian-based
system

Now that you have installed the required NMAP library, start the

Python interpreter from the terminal by typing the python command, and

import the NMAP library, as shown here:

root@kali:~# python

Python 2.7.14+ (default, Dec 5 2017, 15:17:02)

[GCC 7.2.0] on linux2

Type "help", "copyright", "credits" or "license" for more

information.

Chapter 1 IntroduCtIon to nMap

42

>>> import nmap

>>>

You can now create a new object named nmp to invoke the PortScanner

function. Then initiate a new scan for the target IP address 127.0.0.1 and

the ports from 1 to 50, as shown here:

>>> nmp = nmap.PortScanner()

>>> nmp.scan('127.0.0.1', '1-50')

The scan completes and gives you the following output:

{'nmap': {'scanstats': {'uphosts': '1', 'timestr': 'Fri Sep

21 14:02:19 2018', 'downhosts': '0', 'totalhosts': '1',

'elapsed': '1.06'}, 'scaninfo': {'tcp': {'services': '1-50',

'method': 'syn'}}, 'command_line': 'nmap -oX - -p 1-50 -sV

127.0.0.1'}, 'scan': {'127.0.0.1': {'status': {'state': 'up',

'reason': 'localhost-response'}, 'hostnames': [{'type': 'PTR',

'name': 'localhost'}], 'vendor': {}, 'addresses': {'ipv4':

'127.0.0.1'}, 'tcp': {22: {'product': 'OpenSSH', 'state':

'open', 'version': '7.7p1 Debian 4', 'name': 'ssh', 'conf':

'10', 'extrainfo': 'protocol 2.0', 'reason': 'syn-ack', 'cpe':

'cpe:/o:linux:linux_kernel'}}}}}

Though the previous output is raw, it can certainly be formatted using

many of the Python functions. Once you have run the initial scan, you can

explore different functions to retrieve specific scan details.

 scaninfo()

The scaninfo() function returns scan details such as the method used and

the port range probed.

>>> nmp.scaninfo()

{'tcp': {'services': '1-1024', 'method': 'syn'}}

Chapter 1 IntroduCtIon to nMap

43

 all_hosts()

The all_hosts() function returns the list of all IP addresses scanned.

>>> nmp.all_hosts()

['192.168.25.129']

 state()

The state() function returns the state of the IP/host scanned, such as

whether it’s up or down.

>>> nmp['192.168.25.129'].state()

'up'

 keys()

The keys() function returns a list of all open ports found during the scan.

>>> nmp['192.168.25.129']['tcp'].keys()

[512, 513, 514, 139, 111, 80, 53, 22, 23, 25, 445, 21]

 has_tcp()

The has_tcp() function checks whether a particular port was found open

during the scan on the target IP address.

>>> nmp['192.168.25.129'].has_tcp(22)

True

 command_line()

The command_line() function returns the exact NMAP command that ran

in the background to produce the output.

>>> nmp.command_line()

'nmap -oX - -p 1-50 -sV 127.0.0.1'

Chapter 1 IntroduCtIon to nMap

44

 hostname()

The hostname() function returns the host name of the IP address that you

pass as an argument.

>>> nmp['127.0.0.1'].hostname()

'localhost'

 all_protocols()

The all_protocols function returns the list of protocols supported by the

target IP address.

>>> nmp['127.0.0.1'].all_protocols()

['tcp']

Now that you know the basic functions to invoke NMAP from Python,

you can write some simple Python code that uses a loop to scan multiple

IP addresses. Then you can use various text processing functions to clean

and format the output.

 Summary
In this chapter, you learned about the concepts of vulnerability assessment

and penetration testing. You now understand the different phases of the

penetration testing lifecycle and the importance of NMAP, OpenVAS, and

Metasploit, which are capable of performing most of the tasks across all

phases of the penetration testing lifecycle.

This chapter briefed you on the absolute basics and essentials about

the NMAP tool and gave insights into how the NMAP capabilities can be

extended using scripts. The chapter also touch on integrating NMAP with

Python scripting.

Chapter 1 IntroduCtIon to nMap

45

 Do-It-Yourself (DIY) Exercises
• Install NMAP on Windows and Ubuntu.

• Perform a UDP scan on a target system using the

NMAP command line.

• Use NMAP to detect the operating system on the target

system.

• Use an NMAP intense scan on a target system.

• Use various NMAP scripts for enumerating services on

a target system.

• Write some Python code that scans 1 to 500 ports on a

target system.

Chapter 1 IntroduCtIon to nMap

47© Sagar Rahalkar 2019
S. Rahalkar, Quick Start Guide to Penetration Testing,
https://doi.org/10.1007/978-1-4842-4270-4_2

CHAPTER 2

OpenVAS
In the previous chapter, you learned about NMAP and its capabilities.

In this chapter, you’ll learn about how OpenVAS can be used to perform

vulnerability assessments. Specifically, this chapter covers the following:

• Introduction to OpenVAS

• Setting up OpenVAS

• Importing NMAP results into OpenVAS

• Vulnerability scanning

• Reporting

Note The purpose of OpenVAS is limited to vulnerability scanning,
unlike NMAP and Metasploit, which are capable of doing many more
things. From this perspective, all the essential OpenVAS tasks are
covered in this chapter. This will prepare you for the integration of
OpenVAS with Metasploit in the next chapter, where the real fun
starts.

48

 Introduction to OpenVAS
In the previous chapter, you learned about NMAP. NMAP is a tool that is

much more than just a port scanner. For example, you used NMAP for

vulnerability detection. However, it has certain limitations. NMAP mainly

detects only limited known CVEs. Hence, you certainly need a better

solution for performing a vulnerability assessment. Here are a few of the

popular choices:

• Nessus

• Nexpose

• QualysGuard

• OpenVAS

These products are mature and used widely in the industry. For the

scope of this book, you will be learning about the OpenVAS platform. It is

free for community use and offers many useful features.

OpenVAS is an abbreviation for Open Vulnerability Assessment

System. It is not just a tool but a complete framework consisting of several

services and tools, offering a comprehensive and powerful vulnerability

scanning and vulnerability management solution.

Like an antivirus solution has signatures to detect known malwares,

OpenVAS has set of network vulnerability tests (NVTs). The NVTs are

conducted using plug-ins, which are developed using Nessus Attack

Scripting Language (NASL) code. There are more than 50,000 NVTs in

OpenVAS, and new NVTs are being added on a regular basis.

ChAPTer 2 OPeNVAS

49

 Installation
OpenVAS comes with multiple installation options, including the Docker

container. It can be installed on various operating systems. However, the

easiest and fastest way of getting started with OpenVAS is to download the

OpenVAS virtual appliance. The OpenVAS virtual appliance ISO image can

be downloaded from https://www.greenbone.net/en/install_use_gce/.

The benefit of using this virtual appliance is it already has all the

dependencies in place and everything set up. All you need to do is

download the ISO image, boot it in VMware/VirtualBox, and set up some

basic things, and OpenVAS will be up and running in no time.

Once you boot the downloaded ISO, you can get started by selecting

the Setup option, as shown in Figure 2-1.

Figure 2-1. OpenVAS VM initial install screen

The setup then initiates, as shown in Figure 2-2.

ChAPTer 2 OPeNVAS

https://www.greenbone.net/en/install_use_gce/

50

Now you need to create a new user that you will be using for

administrative purposes, as shown in Figure 2-3.

Figure 2-2. OpenVAS installation and setup

Figure 2-3. Setting up a user for the OpenVAS administrator

Then you set a password for the newly created user, as shown in

Figure 2-4.

ChAPTer 2 OPeNVAS

51

Once you have set up the administrative credentials, the installation

reboots, and you are presented with the boot menu, as shown in Figure 2- 5.

Figure 2-4. Setting up a password for the OpenVAS administrative
user

Figure 2-5. OpenVAS boot menu

ChAPTer 2 OPeNVAS

52

Next, you will see the command-line console, as shown in Figure 2-6,

where you need to enter the previously set credentials.

Figure 2-6. OpenVAS virtual machine command-line console

You can see that the OpenVAS setup is complete, and its web interface

has been made available at http://192.168.25.136. You can try accessing

the web interface, as shown in Figure 2-7.

Figure 2-7. OpenVAS web interface with login fields

ChAPTer 2 OPeNVAS

53

Meanwhile, you need to boot into the OS and make a few additional

setting changes, as shown in Figure 2-8.

Figure 2-8. OpenVAS setup and user configuration

You need to create a new admin user and set the username and

password, as shown in Figure 2-9.

ChAPTer 2 OPeNVAS

54

The OpenVAS version you are using is the community edition, and it

doesn’t require any key. However, if you wanted to use the commercial

version, then you would need to enter the subscription key. For now, you

can skip this step, as shown in Figure 2-10.

Figure 2-10. OpenVAS subscription key upload screen

Figure 2-9. OpenVAS virtual machine user configuration

ChAPTer 2 OPeNVAS

55

 OpenVAS Administration
In the previous section, you saw how to set up OpenVAS by downloading

the ready-to-use virtual machine setup. Now, before you get into the actual

scanning part, you need to set up a few things as part of administration.

 Feed Update
Feeds are an absolutely essential component of OpenVAS. If your

OpenVAS setup has old feeds, then you may miss out on detecting the

latest vulnerabilities. Hence, it’s crucial to have the latest feeds in place

before you initiate any scan. To check the current feed version, go to Extras

➤ Feed Status, as shown in Figure 2-11. You can see that the feeds have not

been updated for 54 days.

Figure 2-11. OpenVAS feed status, with outdated feeds

To update the feeds, you can go to the terminal and type command

openvas-feed-update, as shown in Figure 2-12. Just make sure you have

an active Internet connection to update the feeds.

ChAPTer 2 OPeNVAS

56

The feed update will take some time; once it’s done, you can again go

to the OpenVAS web interface and check the feed status. Now you should

see that the feed status is current, as shown in Figure 2-13.

Figure 2-12. Updating the OpenVAS vulnerability feeds

ChAPTer 2 OPeNVAS

57

 User Management
OpenVAS works in a client-server architecture, where multiple users

can connect to a centralized server. Hence, it is important to create and

manage users and groups. Before you create users, you need to have

some user groups in place. To create new OpenVAS user groups, go to

Administration ➤ Groups, as shown in Figure 2-14.

Figure 2-13. OpenVAS feed status, updated

Figure 2-14. OpenVAS user management console

Once you have created and configured the required groups, you

can create new users and assign them to specific groups based on their

privilege levels. To create a new user, go to Administration ➤ Users, as

shown in Figure 2-15.

ChAPTer 2 OPeNVAS

58

While OpenVAS allows you to create and manage users locally, it also

allows you to connect with Lightweight Directory Access Protocol (LDAP)

for centralized user management. It is possible to configure the LDAP

settings by going to Administration ➤ LDAP, as shown in Figure 2-16.

Figure 2-15. Adding new users into OpenVAS

Figure 2-16. OpenVAS configuration for LDAP authentication

ChAPTer 2 OPeNVAS

59

Similarly, OpenVAS can also be configured to authenticate against the

RADIUS server. It can be done by configuring the RADIUS server settings

at Administration ➤ RADIUS, as shown in Figure 2-17.

Figure 2-17. OpenVAS configuration for RADIUS authentication

Figure 2-18. OpenVAS dashboard with demographics

 Dashboard
OpenVAS has a rich dashboard that is its home page by default. The

dashboard offers a centralized view of tasks, hosts, NVTs, and so on, as

shown in Figure 2-18. Each demographic can be exported in CSV format.

ChAPTer 2 OPeNVAS

60

 Scheduler
In an enterprise environment, it may happen that scans are required to run

after business hours. In such a scenario, the OpenVAS scheduler can be

handy. The scheduler can be accessed at Configuration ➤ Schedules and

can be used to trigger scans at a specific time, as shown in Figure 2-19.

Figure 2-19. OpenVAS scan scheduler

 Trashcan
If you happen to delete any of the entities in OpenVAS and later need to

get them back, it is possible to recover them through the trashcan. You can

access it at Extras ➤ Trashcan, as shown in Figure 2-20.

ChAPTer 2 OPeNVAS

61

 Help
Though most of the tasks in OpenVAS are simple and easy to find, it

may so happen that you need some help on certain topics. OpenVAS

has comprehensive help documentation that you can access at Help ➤

Contents, as shown in Figure 2-21.

Figure 2-20. OpenVAS trashcan for viewing and restoring deleted
items

ChAPTer 2 OPeNVAS

62

 Vulnerability Scanning
Now that you have OpenVAS set up and running with updated feeds, you

can get started with scanning a live target. Here, you’ll first try to scan a

Linux system. Log into the OpenVAS web interface, as shown in Figure 2- 22.

Figure 2-21. OpenVAS help content

Figure 2-22. OpenVAS login page

ChAPTer 2 OPeNVAS

63

The next step is to create a new scan task. To create a new scan task, go

to Scans ➤ Tasks, as shown in Figure 2-23.

Figure 2-23. OpenVAS dashboard and task wizard

Now you can either choose to start a simple task wizard or use an

advanced task wizard that offers more scan flexibility. For now, you’ll get

started with the simple task wizard, as shown in Figure 2-24. All you need

to do is enter the target IP address and click Start Scan.

ChAPTer 2 OPeNVAS

64

Note that OpenVAS has several predefined scan profiles. Depending

on the specific requirement, you can choose one of the following scan

profiles:

• Discovery

• Full and Fast

• Full and Fast Ultimate

• Full and Very Deep

• Full and Very Deep Ultimate

• Host Discovery

• System Discovery

For the default scan, the Full and Fast profile is selected.

Figure 2-24. Initiating a new vulnerability scan in OpenVAS

ChAPTer 2 OPeNVAS

65

The scan gets initiated, and you can see the scan status is set to

Running, as shown in Figure 2-25. The scan’s action tab provides various

ways to pause and resume the scan if required.

Figure 2-25. OpenVAS task status dashboard

Figure 2-26. OpenVAS scan results

Once the scan is complete, you can go to Scans ➤ Results to view the

vulnerabilities identified during the scan, as shown in Figure 2-26. Now that

the scan is complete, you can simply view the scan results in the OpenVAS web

console or download a comprehensive report in the format of your choice.

ChAPTer 2 OPeNVAS

66

It is also possible to filter out vulnerability results. For example, you may

want to see only HTTP-related vulnerabilities. Simply go to Scans ➤ Results,

and on the Filter tab, enter the filter criteria, as shown in Figure 2- 27.

Figure 2-27. OpenVAS scan results and filters

 OpenVAS Additional Settings
So far you have seen how to set up the OpenVAS virtual machine and get

started with vulnerability scanning. OpenVAS is a flexible vulnerability

management system that offers a lot of customization. This section talks

about some additional OpenVAS settings that you may choose to configure

as per your requirements.

 Performance
OpenVAS is certainly a resource-intensive tool. It can consume a lot

of memory and CPU. Hence, while scanning a number of systems, it is

worthwhile to keep an eye on its performance. To view the performance

data, go to Extras ➤ Performance, as shown in Figure 2-28. You can view

performance data for a custom time period by filtering the dates.

ChAPTer 2 OPeNVAS

67

 CVSS Calculator
The Common Vulnerability Scoring System (CVSS) is the baseline used

by many security products for calculating a vulnerability’s severity. CVSS

takes into consideration multiple parameters before computing the

vulnerability score. OpenVAS offers a ready-to-use CVSS calculator that

you can use to calculate vulnerability scores. You can access the CVSS

calculator at Extras ➤ CVSS Calculator, as shown in Figure 2-29. You can

find more details about CVSS at https://www.first.org/cvss/.

Figure 2-28. OpenVAS resource and performance management
summary

ChAPTer 2 OPeNVAS

https://www.first.org/cvss/

68

 Settings
OpenVAS is a highly configurable system and has many settings. It can be

really useful to get an overview of all the settings and their values in one

place. You can go to Extras ➤ My Settings, as shown in Figure 2-30, to get

an overview of the settings configured so far.

Figure 2-29. OpenVAS CVSS calculator

Figure 2-30. OpenVAS administrative settings

ChAPTer 2 OPeNVAS

69

 Reporting
So far you have learned how you can effectively use OpenVAS to scan

target systems. Once the scan is complete, the next important step is to

generate a detailed report. Having a comprehensive report is extremely

critical because it will help administrators fix the identified vulnerabilities.

OpenVAS supports multiple report formats, listed here:

• Anonymous XML

• ARF

• CPE

• CSV Hosts

• CSV Results

• HTML

• ITG

• LaTeX

• NBE

• PDF

• Topology SVG

• TXT

• Verinice ISM

• Verinice ITG

• XML

To generate a report in the required format, go to Scans ➤ Reports,

select the format from the drop-down menu, and click the adjacent down

arrow to download the report, as shown in Figure 2-31.

ChAPTer 2 OPeNVAS

70

The report contains detailed vulnerability information, as shown in

Figure 2-32.

Figure 2-31. Export scan results

Figure 2-32. OpenVAS HTML scan report

ChAPTer 2 OPeNVAS

71

For each vulnerability identified, the report has the following details:

• Summary

• Vulnerability detection result

• Impact

• Solution

• Affected software/OS

• Vulnerability insight

• Vulnerability detection method

• Product detection result

• References

 Summary
This chapter gave you an essential overview of OpenVAS starting from its

setup to using it to perform a vulnerability assessment. The next chapter

will introduce you to the versatile Metasploit framework and help you

understand how NMAP and OpenVAS can be integrated with Metasploit.

 Do-It-Yourself (DIY) Exercises
• Set up OpenVAS in VirtualBox or VMware.

• Use OpenVAS to scan one Windows host and one Unix-

based host.

• Generate vulnerability reports in HTML and PDF.

ChAPTer 2 OPeNVAS

73© Sagar Rahalkar 2019
S. Rahalkar, Quick Start Guide to Penetration Testing,
https://doi.org/10.1007/978-1-4842-4270-4_3

CHAPTER 3

Metasploit
The previous two chapters covered NMAP and OpenVAS, which you can

use to perform information gathering, enumeration, and vulnerability

assessments. Moving ahead, this chapter covers the basics of Metasploit,

which will help you sail through the remaining phases of the penetration

testing lifecycle. Specifically, this chapter covers the following:

• Introduction to Metasploit

• Overview of the Metasploit structure

• Basic commands and configuration

• Invoking NMAP and OpenVAS scans from Metasploit

• Scanning services with Metasploit

• Meterpreter basics

 Introduction to Metasploit
Metasploit was released in 2003, when H.D Moore developed a portable

network tool in Perl. In 2007 it was revised use Ruby. The Metasploit

project gained commercial acceptance and popularity when Rapid 7

acquired it in 2009.

Metasploit is not just a single tool. It is a complete framework. It is

extremely robust and flexible and has tons of tools to perform various

simple and complex tasks. It has a unique ability to perform almost all the

74

tasks involved in the penetration testing lifecycle. By using Metasploit, you

don’t need to reinvent the wheel; you just focus on the penetration testing

objectives, and all the supporting actions can be performed using various

components of the framework.

While Metasploit is powerful and capable, you need to clearly

understand its structure and components to use it efficiently.

Metasploit has three editions available.

• Metasploit Pro

• Metasploit Community

• Metasploit Framework

For the scope of this book, we’ll be using the Metasploit Framework

edition.

 Anatomy and Structure of Metasploit
Before jumping into the actual framework commands, you first need to

understand the structure of Metasploit. The best and easiest way to get

to know the overall Metasploit structure is to simply browse through its

directory. In Kali Linux, Metasploit is by default located at /usr/share/

metasploit-framework, as shown in Figure 3-1.

Chapter 3 Metasploit

75

You can see that Metasploit has a well-defined structure classifying its

various components into different categories.

At a high level, Metasploit can be visualized as shown in Figure 3-2.

Figure 3-1. The Metasploit directory structure

Figure 3-2. Various components of Metasploit

Chapter 3 Metasploit

76

 Auxiliaries
Auxiliaries are the modules that make Metasploit so flexible. A Metasploit

auxiliary is nothing but a piece of code specifically written to perform a

task. For example, you may want to check whether a particular FTP server

is allowing anonymous access or if your web server is vulnerable to a

heartbleed attack. For all these tasks, there exists an auxiliary module.

In fact, Metasploit has more than 1,000 auxiliary modules classified

into 19 categories. The following are the auxiliary categories available in

Metasploit:

admin analyze Bnat

Client Crawler Docx

Dos Fileformat Fuzzers

Gather parser pdf

scanner server sniffer

spoof sqli Voip

Vsploit

 Payloads
You have already learned that an exploit is the piece of code that will

be used against the vulnerable component. The exploit code may run

successfully, but what you want to happen once the exploit is successful is

defined by the payload. In simple terms, a payload is the action that needs

to be performed after the execution of an exploit. For example, if you want

Chapter 3 Metasploit

77

to create a reverse shell back to your system, then you need to select the

appropriate Metasploit payload for that. Metasploit has about 42 payloads

in the following categories:

singles stagers stages

 Exploits
Exploits are an extremely important part of Metasploit. The whole purpose

of the framework is to offer exploits for various vulnerabilities. An exploit is

the actual code that will execute on the target system to take advantage of

the vulnerability. Metasploit has more than 1,800 exploits in 17 categories.

The following are the various categories of exploits available in

Metasploit:

aix android apple_ios

Bsdi Dialup Firefox

Freebsd hpux irix

linux Mainframe Multi

Netware osx solaris

Unix Windows

 Encoders
Metasploit helps you generate a wide variety of payloads that you can send

to the target in multiple ways. In the process, it is quite possible that your

payload gets detected by antivirus software or any of the security software

present on the target system. This is where encoders can be of help.

Chapter 3 Metasploit

78

Encoders use various techniques and algorithms to obfuscate the payload

in a way that it doesn’t get detected by antivirus software. Metasploit has

about 40 encoders in ten categories, as shown here:

Cmd Generic

Mipsbe Mipsle

php ppc

ruby sparc

X64 X86

 Post-Exploitation Activities (Post)
Once you have gained basic access to your target system using any of

the available exploits, you can use the post modules to further infiltrate

the target system. These modules help you in all the post-exploitation

activities including the following:

• Escalating user privileges to root or administrator

• Retrieving the system credentials

• Stealing cookies and saved credentials

• Capturing keystrokes on the target system

• Executing custom PowerShell scripts for performing

additional tasks

• Making the access persistent

Chapter 3 Metasploit

79

Metasploit has about 311 post-exploitation modules in the following

11 categories:

aix android

Cisco Firefox

hardware Juniper

linux Multi

osx solaris

Windows

 Basic Commands and Configuration
Now that you are aware of the basic structure and anatomy of Metasploit,

you can get started with its interface. To access Metasploit, open the

terminal and type command msfconsole, as shown in Figure 3-3.

Chapter 3 Metasploit

80

 help
Once you have opened MSFconsole, you can get information about all the

basic commands using the help command, as shown in Figure 3-4.

Figure 3-3. The initial screen of MSFconsole

Chapter 3 Metasploit

81

 version
Vulnerabilities get discovered quickly, and the corresponding exploit code

is also often released soon after. Therefore, it is important that Metasploit is

up-to-date and has the latest set of exploit code. To ensure the framework

version is the latest, you can use the version command, as shown in

Figure 3-5. You can then compare this version with the one available on

the Metasploit Git repository.

Figure 3-4. The output of the help command in MSFconsole

Chapter 3 Metasploit

82

 connect
We are all aware of utilities such as Telnet, SSH, and Netcat that help us in

remote administration. Metasploit has a built-in utility called connect that

can be used to establish a connection and interact with a remote system. It

supports SSL, proxies, pivoting, and file transfers. The connect command

needs a valid IP address and port to connect, as shown in Figure 3-6.

Figure 3-6. The output of the connect command in MSFconsole

Figure 3-5. The output of the version command in MSFconsole

Chapter 3 Metasploit

83

 history
MSFconsole is entirely operated on the command line, and for each task to

be performed, you need to type in some command. To see the commands

you have used so far in MSFconsole, you can use the history command,

as shown in Figure 3-7.

Figure 3-7. The output of the history command in MSFconsole

Chapter 3 Metasploit

84

 set and setg
Metasploit has some variables that need to be set before you execute any

module or exploit. These variables are of two types.

• Local: Local variables are limited and valid only for a

single instance.

• Global: Global variables, once defined, are applicable

across the framework and can be reused wherever

required.

The set command is used to define values of local variables, while the

setg command is used to define values of global variables, as shown in

Figure 3-8.

Figure 3-8. The output of the set and setg commands in
MSFconsole

Chapter 3 Metasploit

85

 get and getg
In the previous section, you saw how to set values of local and global

variables. Once these values are set, you can see those values using the get

and getg commands, as shown in Figure 3-9. The get command fetches

the values of local variables, while the getg command fetches the values of

global variables.

Figure 3-9. The output of the get and getg commands in
MSFconsole

 unset and unsetg
The unset command is used to remove values assigned to a local variable,

while the unsetg command is used to remove values assigned to a global

variable, as shown in Figure 3-10.

Chapter 3 Metasploit

86

 save
While working on a penetration testing project, it might happen that you

configure lots of global variables and settings. You certainly don’t want to

lose these settings; the save command writes the current configuration to

a file, as shown in Figure 3-11.

Figure 3-10. The output of the unset and unsetg commands in
MSFconsole

Figure 3-11. The output of the save command in MSFconsole

Chapter 3 Metasploit

87

 info
There are tons of modules and plug-ins available in Metasploit. It is

impossible to know all of them. Whenever you want to use any module,

you can find out more details about it using the info command, as shown

in Figure 3-12. Simply supply the module name as a parameter to the info

command to get its details.

Figure 3-12. The output of the info command in MSFconsole

 irb
Metasploit is based on Ruby. It offers an Interactive Ruby (irb) shell

wherein you can execute your own set of custom commands. This module

enhances the post-exploitation capabilities of Metasploit. Simply type in

Chapter 3 Metasploit

88

the irb command, as shown in Figure 3-13, to get into the irb shell. To

learn more about Ruby programming, refer to https://www.ruby-lang.

org/en/.

Figure 3-13. The output of the irb command in MSFconsole

 show
In the initial part of this chapter you saw various components of Metasploit

including auxiliaries, exploits, payloads, and so on. Using the show

command, as shown in Figure 3-14, you can list the contents of each

category. For example, you can use the show auxiliary command to list

all the auxiliary modules available within the framework.

Figure 3-14. The output of the show command in MSFconsole

Chapter 3 Metasploit

https://www.ruby-lang.org/en/
https://www.ruby-lang.org/en/

89

 spool
You already saw the save command, which writes the configuration to

a file. In a particular scenario, you may want to save the output of all

modules and commands you execute. The spool command, as shown in

Figure 3-15, logs all the console output to a specified file.

Figure 3-15. The output of the spool command in MSFconsole

Figure 3-16. The output of the makerc command in MSFconsole

 makerc
Automation plays an important role in any framework. It is always helpful

to automate a bunch of repetitive tasks to save time and effort. The makerc

command, as shown in Figure 3-16, helps you automate Metasploit tasks

by saving them as a script.

Chapter 3 Metasploit

90

 db_initiate
Considering the complex nature of Metasploit, it is trivial that there must

exist some database that could be used to store the task’s data. Metasploit

is by default integrated with the PostgreSQL database. You first need to

start the database service by executing the systemctl start postgresql

command followed by the msfdb init command, as shown in Figure 3-17.

Figure 3-17. The output of the systemctl and msfdb init commands
in the terminal

Figure 3-18. The output of the db_status command in MSFconsole

 db_status
Once you have initialized the database, you can confirm that Metasploit is

connected to it by executing the command db_status in MSFconsole, as

shown in Figure 3-18.

Chapter 3 Metasploit

91

 workspace
At times, it may happen that you are required to work on multiple

penetration testing projects simultaneously. You certainly don’t want to

mix up data from multiple projects. Metasploit offers efficient workspace

management. For each new project, you can create a new workspace

and thereby restrict the project data to that workspace. The workspace

command, as shown in Figure 3-19, lists the available workspaces. You can

create a new workspace using the command workspace -a <name>.

Figure 3-19. The output of the workspace command in
MSFconsole

Chapter 3 Metasploit

92

 Invoking NMAP and OpenVAS Scans
from Metasploit
This section introduces how you can invoke and initiate NMAP and

OpenVAS scans from within the Metasploit console.

 NMAP
You learned about NMAP earlier in this book. You saw that NMAP can be

triggered from the command-line interface or the ZENMAP graphical user

interface. However, there is yet another way to initiate NMAP scans, and

that’s through the Metasploit console.

It can be helpful to import the NMAP scan results into Metasploit and

then further exploit the open services. There are two ways this can be

achieved.

• Importing NMAP scans: You are aware that NMAP has

an ability to generate and save scan output in XML

format. You can simply import the NMAP XML output

into Metasploit using the db_import command, as

shown in Figure 3-20.

Chapter 3 Metasploit

93

• Invoking NMAP from within MSFconsole: Metasploit

offers the command db_nmap, which can be used to

initiate NMAP scans directly from within the Metasploit

console, as shown in Figure 3-21.

Figure 3-20. The output of the db_import and hosts commands in
MSFconsole

Chapter 3 Metasploit

94

Once the NMAP scan is complete, you can use the hosts command to

ensure that the scan is complete and the target is added into the Metasploit

database.

Figure 3-21. Invoking NMAP from MSFconsole using the db_nmap
command

Chapter 3 Metasploit

95

 OpenVAS
You are already familiar with OpenVAS because you got a glimpse of most

of its features in previous chapters. However, Metasploit offers capabilities

to integrate OpenVAS to perform tasks from within the framework. Before

you can actually perform any of the OpenVAS tasks from MSFconsole,

you need to load the OpenVAS plug-in by executing the command load

openvas, as shown in Figure 3-22.

Figure 3-22. Loading the OpenVAS plug-in into MSFconsole

Once OpenVAS is loaded in MSFconsole, there are numerous tasks

you can perform. You can use the openvas_help command, as shown in

Figure 3-23, to list all the possible tasks.

Chapter 3 Metasploit

96

The OpenVAS server may be running locally or on some remote

system. You need to connect to the OpenVAS server using the command

openvas_connect, as shown in Figure 3-24. You need to supply a

username, password, OpenVAS server IP, and port as parameters to this

command.

Figure 3-23. The output of the openvas_help command in
MSFconsole

Chapter 3 Metasploit

97

Once the connection to the OpenVAS server is successful, you need

to create a new target using the command openvas_target_create, as

shown in Figure 3-25. You need to supply the test name, target IP address,

and comments (if any) as parameters to this command.

Figure 3-24. Connecting to the OpenVAS server using the openvas_
connect command in MSFconsole

Figure 3-25. Creating a new target for an OpenVAS scan using the
openvas_target_create command in MSFconsole

After creating a new target, you need to select scan profiles using the

command openvas_config_list, as shown in Figure 3-26.

Chapter 3 Metasploit

98

Once you have selected the scan profile, it’s time to create a scan task.

The command openvas_task_create can be used to create a new task, as

shown in Figure 3-27. You need to supply the scan name, comments if any,

the configuration ID, and the target ID as parameters to this command.

Figure 3-26. The output of the openvas_config_list command in
MSFconsole

Figure 3-27. Creating a new OpenVAS scan task using the command
openvas_task_create in MSFconsole

Now that the scan task has been created, you can initiate the scan

using the command openvas_task_start, as shown in Figure 3-28. You

need to supply the task ID as a parameter to this command.

Chapter 3 Metasploit

99

It will take a while before the scan completes. Once the scan is

complete, you can view the reports using the command openvas_report_

list, as shown in Figure 3-29.

Figure 3-28. Running the newly created OpenVAS task using the
openvas_task_start command in MSFconsole

Figure 3-29. Listing the OpenVAS reports using the openvas_report_
list command in MSFconsole

Now that the scan is complete and the report is ready, you can

download the report using the openvas_report_download command, as

shown in Figure 3-30. You need to supply the report ID, report format,

output path, and report name as parameters to this command.

Chapter 3 Metasploit

100

 Scanning and Exploiting Services with
Metasploit Auxiliaries
Metasploit offers a wide choice of exploits and auxiliary modules for

scanning, enumerating, and exploiting various services and protocols.

This section covers some of the auxiliary modules and exploits targeting

commonly used protocols.

 DNS
In the previous chapter, you learned how NMAP can be used for

enumerating a DNS service. Metasploit also has several auxiliary modules

that can be used for DNS reconnaissance.

Figure 3-31 shows the use of the /auxiliary/gather/enum_dns

module. All you need to do is configure the target domain and run the

module. It returns the associated DNS servers as a result.

Figure 3-30. Saving the OpenVAS report using the oepnvas_report_
download command in MSFconsole

Chapter 3 Metasploit

101

 FTP
Let’s assume that when conducting an NMAP scan you found that your target

is running an FTP server on port 21 and the server version is vsftpd 2.3.4.

You can use the search function to find out whether Metasploit has

any exploits for the vsftpd server, as shown in Figure 3-32.

Figure 3-31. The use of the auxiliary module enum_dns

Figure 3-32. The output of the search for the vsftpd exploit

Here you’ll use the exploit /unix/ftp/vsftpd_234_backdoor to exploit

the vulnerable FTP server. You can configure the target IP address as the

RHOST variable and then run the exploit, as shown in Figure 3-33.

Chapter 3 Metasploit

102

The exploit is successful, and you get command shell access to the

target system.

 HTTP
The Hypertext Transfer Protocol (HTTP) is one of the most commonly

found services on hosts. Metasploit has numerous exploits and auxiliaries

to enumerate and exploit an HTTP service. The auxiliary module

auxiliary/scanner/http/http_version, as shown in Figure 3-34,

Figure 3-33. Successful exploitation of target using the vsftpd_234_
backdoor exploit

Chapter 3 Metasploit

103

enumerates the HTTP server version. Based on the exact server version,

you can plan further exploitations more precisely.

Figure 3-34. The output of the auxiliary module http_version

Many times a web server has directories that are not directly exposed

and may contain interesting information. Metasploit has an auxiliary

module called auxiliary/scanner/http/brute_dirs that scans for such

directories, as shown in Figure 3-35.

Figure 3-35. The output of the auxiliary module brute_dirs

Chapter 3 Metasploit

104

 RDP
The Remote Desktop Protocol (RDP) is a proprietary protocol developed

by Microsoft for remote graphical administration. If your target is a

Windows-based system, then you can execute an auxiliary module called

auxiliary/scanner/rdp/ms12_020_check, as shown in Figure 3-36. It

checks whether the target is vulnerable to the MS-12-020 vulnerability.

You can find out more details about this vulnerability at https://docs.

microsoft.com/en-us/security-updates/securitybulletins/2012/

ms12-020.

Figure 3-36. The output of the auxiliary module ms12_020_check

 SMB
In the previous chapter, you used NMAP to enumerate SMB. Metasploit

has lots of useful auxiliary modules for the enumeration and exploitation

of SMB.

A simple search for SMB modules fetches results, as shown in

Figure 3- 37.

Chapter 3 Metasploit

https://docs.microsoft.com/en-us/security-updates/securitybulletins/2012/ms12-020
https://docs.microsoft.com/en-us/security-updates/securitybulletins/2012/ms12-020
https://docs.microsoft.com/en-us/security-updates/securitybulletins/2012/ms12-020

105

You can use one of the auxiliary modules called auxiliary/scanner/

smb/smb_enumshares, as shown in Figure 3-38. You need to set the value of

the RHOST variable to that of the target IP address. The module returns the

results with a list of shares on the target system.

Figure 3-37. The output of the search query for SMB-related modules
and exploits

Figure 3-38. The output of the auxiliary module smb_enumshares

Chapter 3 Metasploit

106

Another popular SMB exploit is for the vulnerability MS-08-67 netapi.

You can use the exploit exploit/windows/smb/ms08_067_netapi, as

shown in Figure 3-39. You need to set the value of the variable RHOST to

the IP address of the target system. If the exploit runs successfully, you are

presented with the Meterpreter shell.

Figure 3-39. Successful exploitation of the target system using the
exploit ms08_067_netapi

 SSH
Secure Shell (SSH) is one of the commonly used protocols for secure

remote administration. Metasploit has many auxiliary modules for SSH

enumeration. You can use the auxiliary module auxiliary/scanner/ssh/

ssh_version, as shown in Figure 3-40. You need to set the value of the

Chapter 3 Metasploit

107

RHOST variable to that of the target. The module executes and returns the

exact SSH version that is running on the target. This information can be

used in further exploitations.

Figure 3-40. The output of the auxiliary module ssh_version

 VNC
Virtual Network Computing (VNC) is a protocol used for graphical remote

administration. Metasploit has several modules for the enumeration and

exploitation of VNC. Figure 3-41 shows the use of the auxiliary/scanner/

vnc/vnc_login module. You need to set the value of the RHOST variable to

the IP address of your target system. The module uses a built-in password

dictionary and attempts a brute-force attack. Once the module completes

execution, it gives you the VNC password that you can use to log in.

Chapter 3 Metasploit

108

 Meterpreter Basics
Meterpreter is the abbreviation for the Metasploit Interpreter. It is

an advanced Metasploit payload that uses in-memory DLL injection

techniques to interact with a target system. It offers several useful post-

exploitation tools and utilities.

 Meterpreter Commands
Meterpreter is an advanced payload for performing various post-

exploitation activities. The following are some of the essential commands

that can help you navigate through Meterpreter.

 Core Commands
Table 3-1 describes a set of core Meterpreter commands that can help you

with various session-related tasks on your target system.

Figure 3-41. The output of the auxiliary module vnc_login

Chapter 3 Metasploit

109

Table 3-1. Meterpreter Commands

Command Description

? Displays the help menu

background Backgrounds the current session

bgkill Kills a background Meterpreter script

bglist lists running background scripts

bgrun executes a Meterpreter script as a background

thread

channel Displays information or controls active channels

close Closes a channel

disable_unicode_

encoding

Disables encoding of Unicode strings

enable_unicode_

encoding

enables encoding of Unicode strings

exit terminates the Meterpreter session

get_timeouts Gets the current session timeout values

guid Gets the session GUiD

help Displays the help menu

info Displays information about a post module

irb Drops into irb scripting mode

load loads one or more Meterpreter extensions

machine_id Gets the MsF iD of the machine attached to the

session

migrate Migrates the server to another process

(continued)

Chapter 3 Metasploit

110

 Stdapi: System Commands
Table 3-2 describes a set of essential system commands that provide an

array of system tasks such as process list and kill, execute commands,

reboot, and so on.

Table 3-1. (continued)

Command Description

pivot Manages pivot listeners

quit terminates the Meterpreter session

read reads data from a channel

resource runs the commands stored in a file

run executes a Meterpreter script or post module

sessions Quickly switches to another session

set_timeouts sets the current session timeout values

sleep Forces Meterpreter to go quiet and then re-

establishes the session

transport Changes the current transport mechanism

uuid Gets the UUiD for the current session

write Writes data to a channel

Chapter 3 Metasploit

111

Table 3-2. System Commands

Command Description

clearev Clears the event log

drop_token relinquishes any active impersonation token

execute executes a command

getenv Gets one or more environment variable values

getpid Gets the current process identifier

getprivs attempts to enable all privileges available to the

current process

getsid Gets the siD of the user who the server is running as

getuid Gets the user who the server is running as

kill terminates a process

localtime Displays the target system’s local date and time

pgrep Filters processes by name

pkill terminates processes by name

ps lists running processes

reboot reboots the remote computer

reg Modifies and interacts with the remote registry

rev2self Calls RevertToSelf() on the remote machine

shell Drops into a system command shell

shutdown shuts down the remote computer

steal_token attempts to steal an impersonation token from the

target process

suspend suspends or resumes a list of processes

sysinfo Gets information about the remote system, such as

the os

Chapter 3 Metasploit

112

 Stdapi: User Interface Commands
Table 3-3 lists the commands that help you get remote screenshots and the

keystrokes from the target system.

Table 3-3. User Interface Commands

Command Description

enumdesktops lists all accessible desktops and window stations

getdesktop Gets the current Meterpreter desktop

idletime returns the number of seconds the remote user has been idle

keyscan_dump Dumps the keystroke buffer

keyscan_start starts capturing keystrokes

keyscan_stop stops capturing keystrokes

screenshot Grabs a screenshot of the interactive desktop

setdesktop Changes the Meterpreter’s current desktop

uictl Controls some of the user interface components

 Stdapi: Webcam Commands
Table 3-4 describes the commands that can be effective in getting

live pictures and video streaming from the webcam attached to your

compromised system.

Chapter 3 Metasploit

113

 Stdapi: Audio Output Commands
Table 3-5 describes a command that helps you play audio files on a

compromised system.

Table 3-4. Webcam Commands

Command Description

record_mic records audio from the default microphone for x seconds

webcam_chat starts a video chat

webcam_list lists webcams

webcam_snap takes a snapshot from the specified webcam

webcam_stream plays a video stream from the specified webcam

Table 3-5. Audio Output Command

Command Description

play plays an audio file on a target system, with nothing written on disk

 Priv: Elevate Commands
Table 3-6 describes a command that helps you escalate privileges to the

highest possible level, possibly root or administrator.

Table 3-6. Elevate Commands

Command Description

getsystem attempts to elevate your privilege to that of the local system

Chapter 3 Metasploit

114

 Priv: Password Database Commands
Table 3-7 describes a command that helps you get the raw password

hashes from the compromised system.

Table 3-7. Password Database Commands

Command Description

hashdump Dumps the contents of the saM database

Table 3-8. Timestomp Commands

Command Description

timestomp Manipulates a file’s MaCe attributes

 Priv: Timestomp Commands
Table 3-8 describes a command that is part of Metasploit’s antiforensic

capabilities.

Using Meterpreter
To get familiar with Meterpreter, let’s first get remote access to a target

system using the SMB MS08-067 netapi vulnerability, as shown in

Figure 3- 42. The exploit was successful, and you get the Meterpreter shell.

Chapter 3 Metasploit

115

 sysinfo
Once you have compromised the target using an exploit, you need to check

some basic details about the target such as the exact operating system

version, computer name, domain, architecture, and so on. Meterpreter

offers a command called sysinfo that can be used to gather basic

information about the target, as shown in Figure 3-43.

Figure 3-42. Successful exploitation of the target system using the
exploit ms08_067_netapi

Figure 3-43. The output of the sysinfo command within Meterpreter

Chapter 3 Metasploit

116

 ls
The Meterpreter ls command can be used to list the files in the current

directory on the compromised system, as shown in Figure 3-44.

Figure 3-44. The output of the auxiliary ls command in the
Meterpreter listing of files on the remote compromised system

Chapter 3 Metasploit

117

 getuid
Once you have gotten access to the target system, you must understand

what user privileges you have on the system. Having the root or

administrator-level privileges is the most desirable, and a lower privilege

access implies lots of restrictions on your actions. Meterpreter offers a

command called getuid, as shown in Figure 3-45, that checks for the

current privilege level on the compromised system.

Figure 3-45. The output of the getuid command in Meterpreter

 getsystem
Once you have gained access to the target system using an applicable

exploit, the next logical step is to check for privileges. Using the getuid

command, you have already gauged your current privilege level. You

may not have gotten root or administrator-level access. so to maximize

the attack penetration, it is important to elevate your user privileges.

Meterpreter helps you escalate privileges. Once a Meterpreter session is

opened, you can use the getsystem command, as shown in Figure 3-46, to

escalate privileges to that of an administrator.

Chapter 3 Metasploit

118

 screenshot
After a system compromise, it is interesting to get a glimpse of the desktop

GUI running on the target system. Meterpreter offers a utility known as

screenshot, as shown in Figure 3-47. It simply takes a snapshot of the

current desktop on the target system and saves it in the local root folder.

Figure 3-46. The output of the getsystem command in Meterpreter

Figure 3-47. The output of the screenshot command in Meterpreter

Figure 3-48 shows the desktop screen captured from a compromised

system.

Chapter 3 Metasploit

119

 hashdump
After a successful system compromise, you certainly will want to get the

credentials of different users on that system. Once a Meterpreter session

is opened, you can use the hashdump command to dump all the LM and

NTLM hashes from the compromised system, as shown in Figure 3-49.

Once you have these hashes, you can feed them to various offline hash

crackers and retrieve passwords in plain text.

Figure 3-48. The screenshot of a desktop running on a remote
compromised system

Figure 3-49. The output of the auxiliary module vnc_login

Chapter 3 Metasploit

120

 Searchsploit
So far you have learned that Metasploit has a rich collection of auxiliaries,

exploits, payloads, encoders, and so on. However, at times an exploit code

for a certain vulnerability might not exist in Metasploit. In such a case, you

may need to import the required exploit into Metasploit from an external

source. Exploit-DB is a comprehensive source of exploits for various

platforms, and Searchsploit is a utility that helps search for a particular

exploit in Exploit-DB. Figure 3-50 shows the use of the Searchsploit tool to

look for uTorrent-related exploits.

Figure 3-50. The use of the Searchsploit tool to search for exploits
related to uTorrent

 Summary
This chapter introduced you to the various aspects of Metasploit, starting

from the framewnd auxiliaries againork structure to using exploits ast

services. You also learned how to leverage Metasploit capabilities to

integrate NMAP and OpenVAS. Having learned about various Metasploit

Chapter 3 Metasploit

121

payloads, auxiliaries, and exploits, in the next chapter you’ll learn to apply

these skills to exploit a vulnerable machine.

 Do-It-Yourself (DIY) Exercises
• Browse through the Metasploit directory and

understand its structure.

• Try various commands such as set, setg, unset,

unsetg, spool, and more.

• Initiate an NMAP scan from MSFconsole.

• Perform a vulnerability assessment on the target

system using OpenVAS from within MSFconsole.

• Explore various auxiliary modules and use them to

scan services such as HTTP, FTP, SSH, and so on.

• Try different features of Meterpreter such as getsystem

and hashdump.

Chapter 3 Metasploit

123© Sagar Rahalkar 2019
S. Rahalkar, Quick Start Guide to Penetration Testing,
https://doi.org/10.1007/978-1-4842-4270-4_4

CHAPTER 4

Use Case
In the previous three chapters, you got acquainted with the essential tools

NMAP, OpenVAS, and Metasploit. You learned about each of the tools

in detail as well as how they can be integrated with each other for better

efficiency.

Now it’s time to put all that knowledge together and apply it in a

practical scenario. In this chapter, you’ll apply the various techniques

you’ve learned so far to exploit a vulnerable system and get access to it.

 Creating a Virtual Lab
It may not always be possible to try your newly learned skills on live

production systems. Hence, you can try your skills in your own virtual lab

in a restricted manner.

Vulnhub (https://www.vulnhub.com) is a site that provides systems

for download that are deliberately made vulnerable. You simply need to

download a system image and boot it in VirtualBox or VMware.

For the purposes of this case study, go to https://www.vulnhub.com/

entry/basic-pentesting-1,216/ and download the system. Once you’ve

downloaded it, boot it using either VirtualBox or VMware. The initial boot

screen for the system looks like Figure 4-1.

https://www.vulnhub.com
https://www.vulnhub.com/entry/basic-pentesting-1,216/
https://www.vulnhub.com/entry/basic-pentesting-1,216/

124

You do not have any credentials to log in to the system, so you will have

to use your pen testing skills to get inside.

 Carrying Out Reconnaissance
In Kali Linux, launch ZENMAP to perform a port scan and service

enumeration on this target, as shown in Figure 4-2.

Figure 4-1. Initial boot screen of target system

Chapter 4 Use Case

125

In the ZENMAP output, you can see that the following ports are open:

• Port 21 running ProFTPD 1.3.3c

• Port 22 running OpenSSH 7.2p2

• Port 80 running Apache httpd 2.4.18

Figure 4-2. Output of NMAP intense scan done on the target system

Chapter 4 Use Case

126

Based on this output, you have three possible ways to compromise the

system.

• Search and execute any exploit for ProFTPD 1.3.3c in

Metasploit

• Brute-force user credentials against SSH running on

port 22

• Explore whether any application is hosted on port 80

 Exploiting the System
When you try to access the system on port 80 using a browser, you will get

the default web server page shown in Figure 4-3.

Figure 4-3. The default landing web page on a target system
(port 80)

You will now go back to NMAP again, and this time instead of a port

scan, you’ll use the NMAP script http-enum, as shown in Figure 4-4.

Chapter 4 Use Case

127

The output of the script tells you that there’s a folder on the web server

named secret, which might have something interesting for you.

Having received inputs about the secret folder on the server, try

accessing it, as shown in Figure 4-5.

Figure 4-4. Output of the http-enum NMAP script executed on a
target system

Chapter 4 Use Case

128

You can see a screen that implies it is some kind of blog based on

WordPress. However, the web page appears to be broken and incomplete.

When you try to load the page, the browser looks for the vtcsec host.

That means you need to configure your system to resolve this hostname.

You can simply open the terminal and then open the file /etc/hosts in a

text editor, as shown in Figure 4-6.

Figure 4-5. Browsing the secret directory hosted on the target web
server

Figure 4-6. Editing the /etc/hosts file to add a new host entry

Chapter 4 Use Case

129

Next, add a new line: 192.168.25.132 vtcsec.

In the terminal, run the following: gedit /etc/hosts.

Now that you have made the necessary changes in the hosts file, let’s

try to access the web interface once again. The interface loads, as shown in

Figure 4-7.

Figure 4-7. The home page of a WordPress blog hosted on the target
system

By examining the page shown in Figure 4-8, it is evident that the

application is based on WordPress.

Chapter 4 Use Case

130

Next, you require the credentials to get into the admin console of the

application. You have three ways of getting them, as shown here:

• Guess the credentials; many times default credentials

work.

• Use a password-cracking tool like Hydra to crack the

credentials.

• Use the Metasploit auxiliary module auxiliary/

scanner/http/wordpress_login_enum to launch a

brute-force attack against the application credentials.

In this case, the application has the default credentials of admin/admin.

Figure 4-8. The WordPress login page on your target system

Chapter 4 Use Case

131

Now that you have application credentials, you can use Metasploit

to upload a malicious plug-in to WordPress, which will give you remote

shell access. A WordPress plug-in is a ready-to-use piece of code that you

can import into the WordPress installation to enable additional features.

You can use the search command in MSFconsole to look for any exploits

related to WordPress administration, as shown in Figure 4-9.

Figure 4-9. Output of the search query for the wp_admin exploit in
Metasploit

You now need to use the exploit exploit/unix/webapp/wp_admin_

shell_upload, as shown in Figure 4-10. You need to configure the

parameters USERNAME, PASSWORD, TARGETURI, and RHOST.

Chapter 4 Use Case

132

The exploit ran successfully by uploading the malicious plug-in into

WordPress and finally giving you the required Meterpreter access.

During your initial NMAP scan, you discovered that your target was

also running an FTP server on port 21. The FTP server version is ProFTPd

1.3.3. You can check whether Metasploit has any exploit for this FTP server

version. Use the search command.

Figure 4-10. The use of the exploit wp_admin_shell_upload against
the target system to gain Meterpreter access

Chapter 4 Use Case

133

Interestingly, Metasploit does have an exploit for the ProFTPd server.

You can use exploit/unix/ftp/proftpd_133c_backdoor, as shown in

Figure 4-11. All you need to configure is the RHOST variable.

Figure 4-11. Output of the search query for proftpd and execution of
the proftpf_133c_backdoor exploit on the target system

The exploit code runs successfully and gives you a shell on the target

system.

Hence, you were successful in exploiting your target in two different

ways, once through WordPress and another through the FTP server.

Congratulations!

Chapter 4 Use Case

135© Sagar Rahalkar 2019
S. Rahalkar, Quick Start Guide to Penetration Testing,
https://doi.org/10.1007/978-1-4842-4270-4

Index

A, B
all_hosts() function, 43
all_protocols function, 44

C
command_line() function, 43
Common Vulnerabilities and

Exposure (CVE), 36
git directories, 37
nmap-vulners, 37
output of, 38–39

Common Vulnerability Scoring
System (CVSS), 67

D
Domain Name System

(DNS), 25, 100

E
Enumeration

DNS, 25
FTP server version, 26
grab service banners, 35
HTTP, 20

methods, 22–23
target IP address, 21

MySQL, 29
SMB, 23
SMTP server, 31
SSH server, 30
VNC, 34
vulnerabilities, 36

F
File Transfer Protocol (FTP), 26, 101

G
Grab service banners, 35

H
has_tcp() function, 43
hostname() function, 44
Hypertext Transfer Protocol

(HTTP), 102

I, J
Interactive Ruby (irb)

command, 87

https://doi.org/10.1007/978-1-4842-4270-4

136

K, L
keys() function, 43

M
Metasploit

anatomy and structure
auxiliaries, 76
components of, 75
directory structure, 75
encoders, 77
exploits, 77
payloads, 76
post, 78

auxiliaries
DNS service, 100
FTP, 101
HTTP, 102
remote desktop protocol, 104
SMB modules, 104, 106
SSH, 106–107
VNC, 107–108

commands and configuration
connect, 82
db_initiate, 90
db_status, 90
get and getg, 85
history, 83
info, 87
irb, 87–88
makerc, 89
msfconsole command, 79, 81
save, 86
set and setg, 84

show, 88
spool, 89
unset and unsetg, 85–86
version, 81
workspace, 91

Meterpreter, 108
audio output

commands, 113
core commands, 108
elevate commands, 113
getsystem, 117–118
getuid, 117
hashdump, 119
ls command, 116
password database, 114
screenshot, 118–119
searchsploit tool, 120
system commands, 110
timestomp commands, 114
user interface commands, 112
webcam commands, 112

NMAP (Network Mapper)
db_import and hosts

commands, 93
db_nmap command, 94
scan results, 92

OpenVAS
openvas_config_list

command, 98
openvas_connect

command, 97
openvas_help command, 96
openvas_report_download

command, 100

Index

137

openvas_report_list
command, 99

openvas_target_create
command, 97

openvas_task_create, 98
openvas_task_start

command, 99
plug-in, 95

phases of, 73
MySQL enumeration, 29

N
Nessus Attack Scripting Language

(NASL) code, 48
NMAP (Network Mapper)

Debian-based system, 6
features of, 4
installation, 5–6
Metasploit, 92

db_import and hosts
commands, 93

db_nmap command, 94
scan results, 92

output, 40
port states, 8
Python (see Python)
scanning, 9

firewall probe, 14
hosts.txt file, 12
input file, 11
intense scan, 19
IP address, 10
OS detection, 18–19

protocols, 13
reason scan, 12
service enumeration, 16
subnet, 10–11
TCP scan, 15–16
topology, 15
UDP port scan, 17

scripts (see Enumeration)
ZENMAP

configuration, 7
nmap command, 6
screen/interface, 8

O
OpenVAS, 47

administration, 55
administrative settings, 50, 68
boot menu, 51
CVSS calculator, 67–68
dashboard, 59
demographics, 59
features of, 48
feed updates, 55

status, 55
vulnerability feeds, 56

help menu, 61–62
installation screen, 49
metasploit

openvas_config_list
command, 98

openvas_connect
command, 97

openvas_help command, 96

Index

138

oepnvas_report_download
command, 100

openvas_report_list
command, 99

openvas_target_create
command, 97

openvas_task_create, 98
openvas_task_start

command, 99
plug-in, 95

overview of, 68
password, 51
purpose of, 47
reports

details, 71
formats, 69
HTML scan report, 70
scan result summary, 70

resource and performance
management, 66–67

scheduler, 60
setup, 50, 53
subscription key upload

screen, 54
trashcan, 60–61
user configuration, 54
user management

adding new users, 58
console, 57
LDAP authentication, 58
RADIUS authentication, 59

virtual machine command-line
console, 52

vulnerability (see Vulnerability
scanning)

web interface and login fields, 52

P, Q
Penetration testing, see also

Vulnerability assessment
covering tracks, 3
enumeration phase, 2
escalating privileges, 2
gain access, 2
information gathering, 2
phases of, 2
tools of, 3–4
vulnerability assessment, 2

Post-Exploitation Activities (Post), 78
Python

all_hosts() function, 43
all_protocols function, 44
command_line() function, 43
Debian-based system, 41
has_tcp() function, 43
hostname() function, 44
keys() function, 43
NMAP library, 41
output, 42
PortScanner function, 42
scaninfo() function, 42
state() function, 43

OpenVAS (cont.)

Index

139

R
Remote Desktop Protocol (RDP), 104

S, T, U
scaninfo() function, 42
Secure Shell (SSH)

protocol, 30, 106–107
Server Message Block (SMB)

protocol, 23, 104, 106
Simple Mail Transfer Protocol

(SMTP), 31
state() function, 43
System exploitation

/etc/hosts file, 128
output of, 127
secret folder, 127–128
web server page, 126
WordPress

admin console of, 130
home page, 129
login page, 130
Meterpreter access, 132
proftpd and execution, 133
search query, 131

V, W, X, Y
Virtual lab, 123, 124
Virtual Network Computing (VNC)

protocol, 34, 107–108
Vulnerability assessments

OpenVAS, 47
organization, 1

Vulnerability scanning
dashboard and task wizard, 63
full and fast profile, 64
login page, 62
results and filters, 66
scan profiles, 64
scan results, 65
task status dashboard, 65

Z
ZENMAP

configuration, 7
nmap command, 6
output of, 125
port scan and service

enumeration, 124
screen/interface, 8

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Introduction to NMAP
	NMAP
	NMAP Installation
	Introduction to NMAP and ZENMAP
	NMAP Port States
	Basic Scanning with NMAP
	Basic Scan on a Single IP
	Basic Scan on an Entire Subnet
	Scan Using an Input File
	Reason Scan
	Supported Protocols
	Firewall Probe
	Topology
	Quick TCP Scan
	Service Enumeration
	UDP Port Scan
	OS Detection
	Intense Scan

	NMAP Scripts
	HTTP Enumeration
	HTTP Methods
	SMB Enumeration
	DNS Enumeration
	FTP Enumeration
	MySQL Enumeration
	SSH Enumeration
	SMTP Enumeration
	VNC Enumeration
	Service Banner Grabbing
	Detecting Vulnerabilities

	NMAP Output
	NMAP and Python
	scaninfo()
	all_hosts()
	state()
	keys()
	has_tcp()
	command_line()
	hostname()
	all_protocols()

	Summary
	Do-It-Yourself (DIY) Exercises

	Chapter 2: OpenVAS
	Introduction to OpenVAS
	Installation
	OpenVAS Administration
	Feed Update
	User Management
	Dashboard
	Scheduler
	Trashcan
	Help

	Vulnerability Scanning
	OpenVAS Additional Settings
	Performance
	CVSS Calculator
	Settings

	Reporting
	Summary
	Do-It-Yourself (DIY) Exercises

	Chapter 3: Metasploit
	Introduction to Metasploit
	Anatomy and Structure of Metasploit
	Auxiliaries
	Payloads
	Exploits
	Encoders
	Post-Exploitation Activities (Post)

	Basic Commands and Configuration
	help
	version
	connect
	history
	set and setg
	get and getg
	unset and unsetg
	save
	info
	irb
	show
	spool
	makerc
	db_initiate
	db_status
	workspace

	Invoking NMAP and OpenVAS Scans from Metasploit
	NMAP
	OpenVAS

	Scanning and Exploiting Services with Metasploit Auxiliaries
	DNS
	FTP
	HTTP
	RDP
	SMB
	SSH
	VNC

	Meterpreter Basics
	Meterpreter Commands
	Core Commands
	Stdapi: System Commands
	Stdapi: User Interface Commands
	Stdapi: Webcam Commands
	Stdapi: Audio Output Commands
	Priv: Elevate Commands
	Priv: Password Database Commands
	Priv: Timestomp Commands

	Using Meterpreter
	sysinfo
	ls
	getuid
	getsystem
	screenshot
	hashdump
	Searchsploit

	Summary
	Do-It-Yourself (DIY) Exercises

	Chapter 4: Use Case
	Creating a Virtual Lab
	Carrying Out Reconnaissance
	Exploiting the System

	Index

