

(Unencrypted) Cloud Backups

{ Chats Chat Backup

Secure Channel

Last Backup: Today, 09:02
Total Size: 705.7 MB

Back up your chat history and media to iCloud so if you
i lose your iPhone or switch to a new one, your chat
history is safe. You can restore your chat history and
media when you reinstall WhatsApp. Media and
messages you back up are not protected by WhatsApp
end-to-end encryption while in iCloud.

w
Back Up Now
Auto Backup Daily
CLOUD
BACKUP

Include Videos

To avoid excessive data charges, connect your phone to Wi-
Fi or disable cellular data for iCloud: iPhone Settings >
Cellular > iCloud Drive > OFF.

End-to-End Encrypted (E2EE) Backups

S

Goal: Full privacy of message content
e |ncluding from backup storage providers (Apple / Google)

e |ncluding even from WhatsApp / Meta

Solutions:
e Ask users to write down the bytes of their encryption key

/» e Ask users to remember a password + enforce attempt limit
This talk

E2EE backup: User password

User

G-.

Key Vault

-3 Creating an E2EE backup

Client generates encryption key.

a User enables E2EE backup.
User creates a password

their E2EE backup from the

o When a user needs to get
cloud, user enters the password

Vault validates the password

e HSM-backed Backup Key
and returns the key

HSM-backed Backup Key Vault

o Encryption key is stored in the
and secured by a user password

-3 Restoring an E2EE backup

Client

Client creates a backup
and encrypts it using the key

The E2EE backup is uploaded to
the cloud - Google Drive or iCloud

e The E2EE backup is
retrieved from the cloud

Client decrypts the backup
using the key and restores
the user’s chat history

=
T
>
>
3
4
Q
)
<
-
0
£
=

.
A o
@
MERKLE TREE
DATABASE

“—————>

</>
HSM

Password
Authentication

CLIENT

WhatsApp Key Vault

i |
| xon I
] /> i
——————— — 3 / d—————— — —
f ; : ‘1
| | HSM] |
| R— |
I |
l I
l |
l |
| |
\ 4 v
h T T T
\
, | = !
Password </ > —————»p ' </ > '
T Authentication] I
CLIENT HSM MERKLE TREE i HSM i
DATABASE
- l_ o _l
\)
A 1
| |
| |
l |
l .!
| |
| |
I - ea» a» e e - ea» eo» e» e l
I . |
\)
f —— 4-—————p 4— —

WhatsApp Key Vault

CLIENT

Password
Authentication

<>

Stored in HSM

Stored in External Storage

hash(

Hash
0

Hagoo
Hash 0-1

)

/

\

Top Hash

hash(159)

With constant local storage
Can validate arbitrary sized data

hash(

Hash

Hash 1-0
Hash 1-1

)

/

AN

Hash
0-0

hash(L1)

Hash

hash(L2)

Hash
1-0

hash(L3)

Hash
1-1

hash(L4)

1

}

1

!

L1

L2

X3

L4

Data
Blocks

_—

HSM

SO I NN N SR T G—

| i
X i
] <[> I
] i
I HSM I
| - _)
\
MERKLE TREE
DATABASE
\ y
4————— »

)
I
|
|
|
|
|
|
v
-—-=-
' oo
V| <D
]
| HSM
|———-
A
I
I
I
I
I
I
I
I
I
)
qq._.a_ﬁw

WhatsApp Key Vault

|
N v
| - T T T j
_ J Al = !
_] ~| @ I
| v i
_] |
_ [)
ﬁ- lllll
llllll L A
} . _
W w _
N\ > : _oluM _
~ %) I W o
v I g R _
[T
! = _
llllll A 4
4, A - T T T i
|] l
_ E Al s
) ~ nw |
_ E _ v| I :
_ E _ :
Q aga llllll
| 4
_ _
\)
— — — — — — —— — 7 D w .A llllllll —
v T
c
ks
©
T O
-
=
g 2

CLIENT

T T T T i - . | s_,
| _ W |
[| _
I I mm |
o I = I «
¢ : S
| g :
| Al s
| | | v I
| | |
| Il L
| 4
| |
o M s B)
\V4 ik
et
= e
S S
> =
-
D 0
. .
S
Q. : I
% ©
Q. E &
< , k o
7)) o
e
qv
m

Client Authentication

S

How to securely authenticate client to HSMs*?

Option 1: “Hash-then-Encrypt” or “Password-over-TLS”

o Client hashes their PIN, and then PK-encrypts to the HSM
o HSM decrypts and verifies hash

Option 2: Password-Authenticated Key Exchange

o Establish a secure channel between client and HSM based on PIN

o Transmit backup key through this channel

OPAQUE [Jarecki, Krawczyk, Xu ‘18]

e OPAQUE is a strong, asymmetric

OPAQUE: An Asymmetric PAKE Protocol
Secure Against Pre-Computation Attacks *

password-authenticated key exchange R

! University of California, Irvine. Email: {stasio@ics.,jiayux@}uci.edu.
2 IBM Research. Email: hugo@ee.technion.ac.il.

Abstract. Password-Authenticated Key Exchange (PAKE) protocols

allow two parties that only share a password to establish a shared key
in a way that is immune to offline attacks. Asymmetric PAKE (aPAKE)
strengthens this notion for the more common client-server setting where

the server stores a mapping of the password and security is required even
upon server compromise; that is, the only allowed attack in this case is an
(inevitable) offline exhaustive dictionary attack against individual user
passwords. Unfortunately, current aPAKE protocols (that do not rely on
PKI) allow for pre-computation attacks that lead to the instantaneous
compromise of user passwords upon server compromise, thus forgoing
much of the intended aPAKE security. Indeed, these protocols use — in
essential ways — deterministic password mappings or use random “salt”
transmitted in the clear from servers to users, and thus are vulnerable
to pre-computation attacks.

We initiate the study of Strong aPAKE protocols that are secure as
aPAKE’s but are also secure against pre-computation attacks. We
formalize this notion in the Universally Composable (UC) settings and
present two modular constructions using an Oblivious PRF as a main

| | tool. The first builds a Strong aPAKE from any aPAKE (which in turn

m] can be constructed from any PAKE [26]) while the second builds a

. r IVI —I— Strong aPAKE from any authenticated key-exchange protocol secure
[l against KCI attacks. Using the latter transformation, we show a

practical instantiation of a UC-secure Strong aPAKE in the Random
Oracle model. The protocol (“OPAQUE”) consists of 3 messages,
requires 3 and 4 exponentiations for server and client, respectively
(including a multi-exponentiation and 1 or 2 fixed-base per party),
provides forward secrecy and explicit mutual authentication, is

1 PKI-free, supports user-side password hardening, has a built-in facility
for password-based storage-and-retrieval of secrets and credentials, and
l | e I I I < : a e — > S a accommodates a user-transparent server-side threshold implementation.

1 Introduction
Passwords constitute the most ubiquitous form of authentication in the
Internet, from the mundane to the most sensitive applications. The almost

* This is a revised ePrint version of the paper which appeared in Eurocrypt 2018 [33].
See revision notes in Sec. 1.2.

e \We use DH-OPRF: F(k,x X, F(X)\K

On backup registration:

On backup recovery:

CLIENT

CLIENT

Client has
shared_secret

RegistrationRequest

>
RegistrationResponse
« SERVER
RegistrationUpload
P
CredentialRequest pwdFile
b
CredentialResponse
< SERVER
CredentialFinalization
b

Server outputs
{0,1} if login was
successful, and

shared_secret if 1

E2EE Backups: Registration g

K, pwd, HSM_PK HSM_SK

Client HSM Server

E2EE Backups: Registration g

K, pwd, HSM_PK HSM_SK

Client HSM Server

1. Pick a random scalar r 2. Send a = H(pwd)Ar

E2EE Backups: Registration

K, pwd, HSM_PK HSM_SK

Client HSM Server

1. Pick a random scalar r 2. Send a = H(pwd)Ar

> 3. Pick a random

OPRF key K’ and

— NI’
4. Send 3 = aNK’, nonce nonce

E2EE Backups: Registration

K, pwd, HSM_PK HSM_SK

Client HSM Server

1. Pick a random scalar r 2. Send a = H(pwd)Ar

> 3. Pick a random

OPRF key K’ and

— NI’
4. Send 3 = aNK’, nonce nonce

-

5. Compute (export_key, client_SK) = PBKDF(pwd, B3/ (1/r))

6. Compute K* = AES-128(export_key, K) and client_PK = g/\client_SK

E2EE Backups: Registration

K, pwd, HSM_PK HSM_SK

Client HSM Server

1. Pick a random scalar r 2. Send a = H(pwd)Ar

> 3. Pick a random

OPRF key K’ and

_ NI’
4. Send B = aNK’, nonce nonce

-

5. Compute (export_key, client_SK) = PBKDF(pwd, B/ (1/1)) 8. Decrypt E and

6. Compute K* = AES-128(export_key, K) and client_PK = g/Aclient_SK verify transcript, then

7. Send E = RSA-OAEP(HSM_PK, K* || client_PK || transcript) store K, K', and
> client_PK for user

K. pwd, HSM_PK HSM_SK
Client PRF F(k, x) = PBKDF(x, H(x)"k) HSM Server

1. Pick a random sce

Client has backup key K and PIN.

3. Pick a random

For each client, server stores: OPRF key K ana
Nonce
- K’, a freshly generated PRF key
o- Lompute (export_ - K* = AEST 28(F(K’, de), K) 8. Decrypt E and
6. Compute K™ = AKX - client_PK verify transcript, then
7. Send E = RSA-OAEPHSM_PK, K* || client_PK || transcript) store K, K, and

> client PK for user

E2EE Backups: Recovery g

pwd, HSM_PK HSM_SK, K’ K, client_PK

Client HSM Server

E2EE Backups: Recovery

pwd, HSM_PK HSM_SK, K’ K, client_PK

Client HSM Server

1. Pick a random scalar r and

client e SK

2. Send a = H(pwd)Ar, client_e PK

>

E2EE Backups: Recovery

pwd, HSM_PK HSM_SK, K’ K, client_PK

Client HSM Server

1. Pick a random scalar r and 2. Send a = H(pwd)/r, client_e_PK

client e SK _ 3. Pick a server_e_SK,

4. Send B = a~K’, server_e_PK, o = Sign(HSM_SK, B) decrement

< attempt_counter

E2EE Backups: Recovery

pwd, HSM_PK HSM_SK, K’ K, client_PK

Client HSM Server

1. Pick a random scalar r and 2. Send a = H(pwd)/r, client_e_PK

client_e_SK _ 3. Pick a server_e_SK,
4. Send 3 = a/K', server_e_PK, o = Sign(HSM_SK, [3) decrement
< attempt_counter

5. Compute (export_key, client_SK) = PBKDF(owd, 3 (1/r))

©. Derive shared_secret_key from KE protocol

/. < Complete KE with server >

E2EE Backups: Recovery

owd, HSM_PK

Client

1. Pick a random scalar r and 2. Send a = H(pwd)/r, client_e_PK

client e SK

>

4, Send 3 = anK’, server_e_ PK, o = Sign(HSM_SK, 3)

-

5. Compute (export_key, client_SK) = PBKDF(owd, 3 (1/r))

©. Derive shared_secret_key from KE protocol

/. < Complete KE with server >

9. Send C = AES(shared_secret_key, K¥)

<

10. Decrypt C with shared_secret_key, then decrypt result with export_key to obtain K

HSM_SK, K’ K, client_PK

HSM Server

3. Pick a server e SK,
decrement

attempt_counter

8. Verify KE
completion, reset
attempt_counter, and
obtain

shared_secret_key

More Resources

e Security audit from NCC Group In
2021

nccoroup”

() WhatsApp

End-to-End Encrypted Backups Security
Assessment

e \\Ve released a whitepaper on the
E2EE backup design

e Open-source Rust OPAQUE library

Prepared by
Gérald Doussot
Marie-Sarah Lacharité
Eric Schorn

Prepared by NCC Group Security Services, Inc. for WhatsApp. Portions of this document and the
templates used in its production are the property of NCC Group and cannot be copied (in full or in
part) without NCC Group's permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and
the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of
the information contained herein. Use of NCC Group's services does not guarantee the security of a
system, or that computer intrusions will not occur.

-

Future Work

1. Alternatives to HSMs?

2. Threshold OPRFs / OPAQUE"?

14:44 >m)

« Search

£ Chats Chat Backup

@ Last Backup: Yesterday, 04:16
Total Size: 1.51 GB

Back up your chat history and media to iCloud so if
you lose your iPhone or switch to a new one, your
chat history is safe. You can restore your chat history
and media when you reinstall WhatsApp.

Back Up Now

Auto Backup Daily

Include Videos

To avoid excessive data charges, connect your phone to Wi-
Fi or disable cellular data for iCloud: iPhone Settings >
Cellular > iCloud Drive > OFF.

End-to-end Encrypted Backup On

For another layer of security, protect your backup with end-
to-end encryption.

14:43 —

« Search

< Back Encrypted Backup

o

End-to-end Encrypted Backup is On

To restore your end-to-end encrypted backup,
you will need your password.

Change Password

Your backup is end-to-end encrypted on
iCloud. No one, not even Apple or WhatsApp,
can access it.

Turn Off

As of December 2022:

Will Cathcart &
@wecathcart

Also excited to see Apple bring end-to-end encrypted backups to
iCloud. We launched this on WhatsApp over a year ago and have seen
more than 100 million users turn it on already. People want privacy.

& will Cathcart & @wcathcart - Sep 10, 2021

We're very excited to be launching end-to-end encrypted backups on
WhatsApp.

Show this thread

‘ 3:35

<

End-to-end encrypted backup

Q

